Ваши персональные данные (cookie, данные об IP-адресе и местоположении) обрабатываются на сайте в целях его функционирования. Если вы не согласны с этим — пожалуйста, покиньте этот сайт. В противном случае это будет являться согласием на обработку ваших персональных данных.

Бренды
Свежие поступления
Главная страница Полезные статьи Профессиональный звук

Профессиональный звук

14.12.2010 Автор: Владимир Севостьянов

Устройства динамической обработки сигналов. 


В настоящее время существует огромное множество различных процессоров для динамической обработки звуковых сигналов - это различного рода компрессоры, гейты, экспандеры, левеллеры, лимитеры, и т.д. и т.п. В этом многообразии нетрудно и запутаться - какой прибор необходим в конкретной ситуации? Чем отличаются приборы, имеющие схожее действие - гейт и экспандер, к примеру? А компрессор и левеллер?

И таких вопросов - масса. Включая и наиболее часто встречающийся - а для чего вообще эта самая “динамическая обработка”? Казалось бы - чего тут мудрить при записи, “воткнуть” всё в пульт - и дело с концом. Ан, нет! Не так всё просто...

Устройства динамической обработки сигналов применяются в двух случаях - либо в художественных целях (это тема особого разговора), либо для получения более качественного звучания. Можно, конечно, спросить - как это, более качественного?

Разве “живое” звучание - недостаточно хорошо? В концертном зале - да, конечно. Но в тех случаях, когда сигнал необходимо записывать, или передавать по линиям связи - увы!

Здесь мы сталкиваемся с тем объективным фактором, что динамический диапазон тракта (любого!) - к сожалению, ограничен.

Заявляемые для наиболее распространённого сейчас носителя (CD) цифры - динамический диапазон в 96дБ - не совсем верны. То есть, если рассматривать их как отношение самого громкого сигнала к уровню шумов в паузе - цифры, безусловно, правильны. Однако это справедливо только для сигналов максимальной амплитуды. Реальные же звуковые сигналы имеют довольно большой пик-фактор, так что от 96дБ необходимо отнять примерно 15 - 20дБ. Вот - уже осталось менее 80дБ. Затем необходимо учесть тот факт, что в цифровых трактах качество сигналов сильно ухудшается при уменьшении его амплитуды. И сигнал с уровнем -60дБ передаётся всего лишь шестью разрядами цифрового кода, а при этом говорить о сколько-нибудь приличном звучании - естественно, уже не приходится. Таким образом, динамический диапазон CD реально составляет величину, существенно меньшую, чем 96дБ.

Динамический же диапазон реальных сигналов может быть гораздо больше - например, для симфонического оркестра он может составлять до 120дБ! И как его “впихнуть” в ограниченный диапазон тракта?

Вторая большая группа проблем - это “что делать с мешающими сигналами?” Типа шумов в паузе, пролезающих в микрофоны посторонних сигналов, фонов и шипения от гитарных “примочек” и т.д. и т.п.? Вот во всех этих случаях и возникает необходимость в автоматическом управлении уровнями сигналов, иначе говоря - в применении устройств динамической обработки сигналов.

Все устройства динамической обработки можно разделить на два больших класса - по характеру взаимосвязи их коэффициента усиления и уровня входного сигнала.

Если при увеличении уровня входного сигнала коэффициент передачи устройства уменьшается - то это компрессор и/или его разновидности. Такие, как лимитер, левеллер, “дакер”, и др.

Если же при увеличении входного сигнала коэффициент передачи устройства также увеличивается - то это экспандер или гейт.

Все, без исключения, устройства динамической обработки сигналов относятся к одному их этих двух классов. Существует, конечно, большое число приборов, носящих различного рода громкие, пугающие “фирменные” названия. Этого не следует бояться. Частенько это либо просто “красивости”, не несущие никакой явной смысловой нагрузки, либо - в лучшем случае - сложносоставные названия, “собранные” из кусочков названий частей приборов. Например, “компеллор” - это “КОМПрессор + левЕЛЛЕР”. Только чуть “замаскированные”...


Компрессор и его производные

Итак - компрессор. Название происходит от английского глагола “to compress” - сжимать. Как следует из самого названия, компрессор - это устройство для сжатия, в данном конкретном случае - динамического диапазона исходного звукового сигнала.

Основными параметрами компрессии являются: степень компрессии “ratio”, порог срабатывания “threshold”, а также время срабатывания “attack” и время восстановления “release”.

 

Мерой компрессии служит степень компрессии ( RATIO).

Степень компрессии - это отношение величины приращения входного сигнала к величине вызванного им приращения выходного сигнала. (При этом - измеряемые величины должны быть выражены в децибелах!)

RATIO=dUвх(дБ)/dUвых(дБ)

 

Динамические характеристики компрессоров определяются временами срабатывания ATTACK и восстановления RELEASE.

Время срабатывания (ATTACK) - это промежуток времени между моментом, когда от источника подаётся скачок сигнала с уровнем на 6 дБ выше исходного, и моментом, когда выходной уровень достигает значения на 2 дБ выше установившегося значения выходного сигнала.(рис.2).

 

Время восстановления (RELEASE) - это промежуток времени между моментом, когда уровень сигнала источника уменьшается на 6 ДБ от исходного, и моментом, когда выходной уровень достигает значения на 2 дБ ниже его установившегося значения

 

Естественно, что всё это должно происходить в области уровней входного сигнала, лежащих выше порога срабатывания!

Любой компрессор (как, впрочем, и любое устройство динамической обработки вообще) содержит, как минимум, две больших составных части - звуковой тракт и цепь управления. Последняя в англоязычной литературе носит название “side chain”.

 

В состав звукового тракта входят обычно - как минимум - три элемента : входной и выходной усилители (1 и 3, соответственно), и собственно элемент, изменяющий коэффициент усиления звукового сигнала (управляемый усилитель) - VCA (2).


Цепь управления состоит из выпрямителя 4 - для преобразования звукового сигнала в управляющее постоянное напряжение, и цепи управления компрессией 5. В последней как раз и осуществляется установка динамических параметров компрессора, а также управление степенью компрессии и порогом срабатывания.

В некоторых моделях компрессоров - как и гейтов, и прочего в этом роде - предусматриваются гнёзда SIDE CHAIN - для включения в цепь управления, перед выпрямителем, дополнительного эквалайзера. При включении какого-либо эквалайзера в разрыв цепи управления - компрессор как-бы “обманывается”, т.е. он “видит” не совсем тот сигнал, который поступает ему на вход. Этим обеспечиваются более широкие функциональные возможности для обработки исходных сигналов - становится возможной

частотно-зависимая динамическая обработка - такая, например, как де-ессер.

(Хотя, строго говоря, применение компрессора с эквалайзером в SIDE CHAIN - это только имитация настоящего де-ессера. И может более-менее терпимо использоваться лишь на сольной вокальной партии, да и то - либо компрессор, либо де-ессер. Одно из двух...)

Эти гнёзда по выполняемым функциям являются аналогом гнёзд INSERT на микшерном пульте. С одной “маленькой разницей”...

Помните! Любые эквалайзеры, включённые в SIDE CHAIN, не изменяют тембр звука

в основном канале! Они влияют только на параметры управления, и соответственно, на характер осуществляемой динамической обработки.

Если отвлечься от конструктивных особенностей, то по характеру реакции на входной сигнал все компрессоры можно разделить на две большие группы - с ручным управлением параметрами компрессии, и “автоматизированные”, с той или иной степенью автоматического управления этими параметрами.

В “ручных” - все динамические параметры задаются пользователем. Это обеспечивает очень большую свободу в их выборе, для получения тех или иных необходимых вам художественных результатов. Ведь не секрет, что компрессором можно изменить исходное звучание как угодно, хоть до “полной неузнаваемости”. Вот “ручной” компрессор - как раз и служит именно для этого, для специального и преднамеренного изменения характера исходного звучания в нужную вам сторону. В зарубежной литературе этот тип компрессоров часто носит название CREATIVE - “творческий”, “созидательный”.

Соответственно, для их правильного использования - необходима достаточно высокая квалификация, а то ведь вместо улучшения звука можно его непоправимо испортить!

(Что, к сожалению, часто и происходит...)


Учтите: Перекомпрессированный сигнал исправить в дальнейшем невозможно!


В противоположность этому, в автоматизированных компрессорах - динамические параметры раз и навсегда установлены изготовителем, и их изменение пользователем

невозможно. Хотя некоторые “именитые производители”, выпускающие действительно добротную продукцию, в ряде моделей предлагают пользователю на выбор несколько алгоритмов автоматизации, для различных вариантов обработки.

Как правило, большинство автоматизированных компрессоров не изменяют динамические параметры звука сколько-нибудь существенным образом, а только “выравнивают” исходное звучание, делают его более плотным и насыщенным.

Автоматизированные компрессоры - также, в свою очередь, можно разделить также на два больших класса - RMS, и, условно, “не-RMS”.

“Не-RMS” - это компрессоры, имеющие обычный (иногда называемый “пиковым”) детектор, и один или несколько наборов заводских предустановок (пресетов), различных сочетаний времён срабатывания ATTACK и восстановления RELEASE. Как правило, в случае только одного возможного варианта предустановок - такой компрессор предназначен для обработки какого-то одного типа сигналов, и только для него работа такого компрессора будет действительно хорошей. Связано это с тем фактом, что все сигналы имеют сильно различающиеся динамические параметры, причём эти параметры для различных звучаний могут отличаться в сотни, и даже тысячи, раз. Очевидно, что сочетание параметров, оптимальное для одного звучания - скорее всего, для другого будет малопригодно. Хотя и это - иногда - может дать интересные, неожиданные эффекты.

Несколько особняком стоит такой, до недавнего времени весьма “экзотический” для большинства наших звукорежиссёров класс компрессоров, как RMS. В последние годы всё большее количество фирм приступает к их выпуску, что объясняется постоянно растущей популярностью этого типа компрессоров, как при звукозаписи, так и в "живой" концертной работе. К сожалению, до сравнительно недавнего времени этот класс компрессоров был мало знаком большинству звукорежиссёров, да и сейчас не очень многие хорошо знают, что же это такое. А в самом деле, что?

Название RMS- это английская аббревиатура слов "Root Mean Square", которым соответствует отечественный термин "среднеквадратическое значение". (Ранее в электронике бытовало понятие "эффективное значение", эти термины - синонимы)

Как следует из названия, этот тип компрессора должен реагировать на эффективное, действующее значение сигнала. Это и в самом деле так: RMS-компрессор реагирует непосредственно на МОЩНОСТЬ звукового сигнала, а не на его мгновенные значения, как обычный компрессор. Цепи управления компрессоров этого типа построены таким образом, что, скажем, длительный сигнал небольшой амплитуды имеет гораздо большую "важность" для целей управления усилением компрессора, нежели короткий импульс большой амплитуды. Это, однако, вовсе не означает, что, взяв обычный компрессор и установив регуляторы Attack и Release на максимум, вы получите RMS-компрессор. Ничего подобного, увы! Всё гораздо сложнее...

Применяемые для цепей управления специальные схемы обладают очень малой погрешностью детектирования сигналов с большим пик-фактором, и, как правило, имеют специальные цепи адаптации динамических параметров детектора ко входному сигналу, с учётом его восприятия слухом. Иначе говоря, временные параметры в настоящем RMS-компрессоре не являются чем-то раз и навсегда заданным, а сложным образом изменяются в зависимости от частоты и уровня входного сигнала, его спектра. Это обеспечивает отсутствие "механистичности" в работе компрессора и очень малую заметность вмешательства компрессора в обрабатываемый сигнал.

Вместе взятые, эти меры обеспечивают очень высокую "музыкальность" работы

RMS-компрессора, который при правильном применении практически не изменяет

динамику исходного музыкального сигнала, а только его как бы "подравнивает",

уплотняет. Звучание становится более ровным и мощным, без ненужных "шероховатостей". Применение RMS-компрессора не требует высокой квалификации, и доступно практически любому звукорежиссёру, от совсем начинающих - до опытных профессионалов. (Впрочем, даже при не слишком умелом использовании, сильно испортить звук RMS-компрессором практически невозможно.)

Помимо основных, в некоторых моделях компрессоров имеются и некоторые дополнительные устройства, улучшающие их потребительские свойства.

Так, например, для уменьшения заметности момента включения компрессора в работу многие компрессоры имеют так называемый "мягкий порог" (Soft Threshold), обеспечивающий плавное вхождение в режим компрессии. На рис.5 изображены проходные характеристики ( зависимость уровня выходного сигнала от уровня входного) для двух компрессоров - обычного ( ломаная линия 1 ) и компрессора с "мягким порогом" ( кривая 2 ).

 

По мере возрастания входного сигнала степень компрессии увеличивается плавно, а не включается скачкообразно, как в обычном компрессоре. Таким образом удаётся сильно ослабить заметность начала компрессии, сделать этот момент практически неслышным.

В особо престижных моделях компрессоров - можно даже регулировать степень крутизны излома проходной характеристики, делать его более (или менее) “мягким”.

Далее - общеизвестно свойство компрессии, особенно быстрой (при малых временах срабатывания и восстановления), как-бы “съедать” высокие частоты в обрабатываемом сигнале. Для устранения этого явления в некоторых компрессорах применяются различного рода специальные устройства (ВЧ-экспандеры), позволяющие в ряде случаев избежать этого нежелательного эффекта. Обычно в таких устройствах сигнал разделяется на две полосы, и в то время, как основной сигнал компрессируется, его высокочастотная составляющая передаётся на выход либо неизменной, либо наоборот - усиленной, пропорционально ослаблению уровня основного сигнала. В выходном усилителе обе эти составляющие суммируются, и эффект “съедания ВЧ” таким образом существенно ослабляется. К сожалению, большинство подобных устройств хорошо себя проявляют лишь при использовании их в качестве “спецэффектов”, а их применение для заявленных изготовителями целями - малоэффективно.

Конечно, кроме описанных выше, существуют и некоторые другие разновидности компрессоров. Рассмотрим некоторые из них подробнее.

Лимитер. В принципе, это не какой-то “отдельный вид” компрессоров, а всего лишь один из частных случаев работы компрессора. Лимитирование отличается от компрессирования прежде всего степенью компрессии RATIO. Для лимитирования достаточно перевести этот регулятор в положение RATIO=бесконечность:1, при этом - независимо от приращения входного сигнала - уровень сигнала на его выходе увеличиваться не будет. ( Естественно, что речь идёт о сигналах, лежащих выше порога срабатывания! ) Но... Здесь есть одна тонкость.

Дело в том, что основное предназначение лимитера - защита последующих узлов тракта от перегрузок. Любых, даже малейших. При этом он должен на 100% не допускать превышения установленного Вами выходного уровня, но абсолютно не трогать сигналы, лежащие ниже порога срабатывания. Отсюда - с неизбежностью следует вывод, что компрессоры с “мягким коленом” - принципиально непригодны для этих целей. Ведь для них само понятие “порога” имеет весьма расплывчатый смысл. Действительно - ведь для “незаметности” работы у них протяжённость “мягкого” участка характеристики весьма велика, и у некоторых моделей достигает 40дБ! Т.е. от начала вмешательства такого компрессора в сигнал, и до того момента, когда он достигнет режима лимитирования - уровень входного сигнала должен возрасти на эту величину! И всё это время никакого лимитирования ещё не происходит, но сигнал - уже “жуётся”... Почему? Об этом - чуть ниже.

Широко применяемые компрессоры, имеющие ту или иную автоматизацию динамики своей работы - также практически непригодны для использования в качестве лимитера.

Причина этого кроется в том, что, как ранее уже говорилось, их динамика оптимизирована под какой-либо конкретный вид сигнала, и именно под его компрессию, а не что-либо иное. А лимитер, помимо большего RATIO, имеет и принципиально иные динамические характеристики. В самом деле - он должен очень быстро (в идеале - мгновенно!) “съесть” сигнал перегрузки, и столь же быстро вернуться к исходному состоянию. В автоматизированном компрессоре получить это - попросту невозможно. В хорошем же лимитере возможно установить время срабатывания вплоть до 5 микросекунд, чего в компрессорах просто не бывает. Время восстановления в реальном защитном лимитере также весьма мало - несколько десятков миллисекунд. Очевидно, что компрессия с такими параметрами способна - и сильнейшим образом - изуродовать сигнал. Вот вам заодно и причина того, что если в компрессоре с “мягким” порогом выставить динамические параметры, пригодные для лимитирования -сигнал будет просто изуродован - не та динамика...

Левеллер. Это - ещё одна разновидность RMS-компрессора. Основное его отличие от “обычного RMS” - это гораздо большие постоянные времени детектора, вплоть до 10 секунд в некоторых моделях. Кроме этого, они имеют несколько другую проходную характеристику.

Независимо от RATIO - сигнал со входным уровнем 0дБ на выходе имеет такой же уровень, а сигналы с иными уровнями как-бы “подтягиваются” к нему. Более сильные - ослабляются, более слабые - усиливаются. Причём, чем большее RATIO установлено - тем сильнее сигналы “прижимаются” к уровню 0дБ. (Конечно, уровень 0дБ здесь приведён только для примера. В реальных устройствах имеется регулятор уровня, к которому должны “подтягиваться” сигналы).

 

Де-ессер, де-поппер. 

Варианты частотно-зависимого компрессора, а точнее - “полосового” компрессора. Почему полосового? Потому, что настоящий де-ессер (и, естественно, де-поппер) должен обрабатывать только узкую полосу мешающего сигнала, не затрагивая всего остального. (Обычный компрессор - в режиме де-ессера, с фильтром (эквалайзером) в цепи управления - обрабатывает всю полосу частот входного сигнала. Он просто более “чуток” к выделенной области спектра.) Отличие де-ессера и де-поппера в том, что де-ессер работает на высокочастотных сигналах, убирая “цыканье” и шепелявость. Де-поппер (смешное название, правда?) - наоборот, работает в низкочастотной области спектра, убирая “пыханье” и бубнение. В остальном они принципиальных отличий не имеют. Главное отличие этих приборов от остальных устройств динамической обработки - это то, что порог срабатывания в них не фиксированный (ручкой управления THRESHOLD, как обычно), а “плавающий”. Что значит - плавающий? То, что он определяется разностью уровней обрабатываемой части спектра, с одной стороны, и всего остального - с другой стороны. Такое построение обеспечивает нормальное их функционирование, независимо от абсолютных уровней входных сигналов. Т.е. де-ессер постоянно анализирует спектр входного сигнала, и если “видит”, что уровень сигнала в установленной вами полосе превышает допустимое соотношение его и “всего остального”, то он уменьшает уровень сигналов в этой полосе до допустимой (установленной вами) величины.

Компрессор/лимитер. Яркий пример широко распространённого заблуждения. Очень многие считают, что купив прибор с таким названием - они купили и компрессор и лимитер. Неверно! Это - не компрессор + лимитер. Вы имеете обычный компрессор, который можно перевести в режим лимитера. И ничего больше! Т.е. либо - это у вас работает как компрессор, либо - как лимитер. Третьего - не дано... Если же вам нужно и то, и другое - то при покупке убедитесь, что имеется хотя бы один отдельный регулятор для установки параметров лимитирования. Чаще всего - это регулятор порога срабатывания лимитера LIMIT. Хотя, конечно, встречаются и другие названия - PEAK STOP, например, и прочие.

Естественно, что кроме описанных выше, существуют и другие виды компрессоров - такие, как многополосные компрессоры, AGC-контроллеры, АРУЗ и т.д. и т.п. Но, к сожалению, описать более-менее подробно все виды компрессоров в одной статье, на журнальных страницах, просто невозможно...


Экспандер, гейт, и прочее

Экспандер - это “компрессор наоборот”. Название - происходит от английского глагола “to expand” - расширять, растягивать. У него, как ранее уже отмечалось, коэффициент передачи пропорционален уровню входного сигнала, т.е. чем громче входной сигнал - тем громче выходной. Существуют две основных разновидности экспандера - “экспандер вверх” (Upward Expander) и “экспандер вниз” (Downward Expander).

Отличаются они по характеру реагирования на входной сигнал. “Экспандер вверх” - обрабатывает только сигналы, лежащие выше порога его срабатывания, делая громкие - более громкими. Тихие же сигналы, ниже порога срабатывания, он не трогает. В реальной практике почти не встречается, единственное исключение - гитарный бустер.

Почему же не применяется, хотя некоторые часто говорят - “хороший прибор, позволяет восстановить исходную динамику чрезмерно сильно “зажатого” компрессорами сигнала”?

Ответ на этот вопрос распадается на два. Во-первых, пережатый до “квадратного” состояния сигнал - не восстановить ничем, расстаньтесь с этой иллюзией! А во-вторых...

Как и компрессор, экспандер имеет время открывания ATTACK, и время закрывания RELEASE. Вот тут-то и кроются причины всех проблем. Представьте себе - вы хотите обработать суммарную фонограмму, с записью самых различных инструментов. Для того, чтобы обработанный “экспандером вверх” сигнал барабана не потерял свою исходную атаку - естественно, необходимо установить очень быстрое открывание экспандера. Но при этом - сигналы инструментов с медленными атаками (орган, струнные) приобретут, благодаря действию экспандера, чрезмерно резкие атаки, а попросту говоря - начнут “щёлкать” в момент открывания экспандера. Эти щелчки крайне неприятны для слуха, не маскируются сигналом, и практически полностью исключают возможность применения “экспандера вверх” в звукотехнике, на реальном суммарном звуковом сигнале.

“Экспандер вниз” - наоборот, не трогает сигналы выше порога срабатывания, а только делает тише сигналы, лежащие ниже этого порога. В принципе, по характеру своего действия на сигнал - это устройство схоже с гейтом, и, как правило, применяется для аналогичных целей, для подавления слабых - но мешающих - сигналов. В этом качестве “экспандер вниз” входит составной частью практически во все шумоподавители (денойзеры).

Органы управления у экспандеров аналогичны компрессору, кроме уже рассмотренных - это, естественно, регулятор порога срабатывания THRESHOLD, и регулятор степени расширения (экспандирования) RATIO. Этот регулятор имеет маркировку, обратную компрессорной, он показывает, на сколько децибел изменится выходной сигнал при изменении входного сигнала на 1дБ. Т.е. если в компрессоре RATIO=5:1 говорит нам, что при изменении уровня входного сигнала на 5дБ выходной сигнал изменится на 1дБ, то в экспандере RATIO=1:5 показывает - при изменении входного сигнала на 1дБ уровень выходного сигнала изменится на 5дБ.

Гейт - один из самых распространённых приборов динамической обработки. Его название происходит от английского слова “Gate” - клапан, ворота. Основное, “исходное” назначение гейта - отсечка сигналов малого уровня, для которых он и является своеобразным клапаном, не пропуская их на выход. Отчасти гейт похож на экспандер, но - только отчасти. Т.е. если в “экспандере вниз” установить RATIO=1:бесконечность, то он будет функционировать как гейт. Но не наоборот! Ведь экспандер - при всех положениях RATIO, кроме вышеприведённого - как бы “следит” за сигналом, т.е. он не имеет устойчивого состояния, его коэффициент передачи всё время изменяется. (Больше сигнал - больше усиление, меньше сигнал - меньше усиление.) Гейт же имеет только два устойчивых состояния, открытое и закрытое. А в моменты ATTACK и RELEASE - он просто переходит из одного состояния в другое.

По своей работе - гейт аналогичен формирователю огибающей в синтезаторах. Т.е. это такой же многоступенчатый формирователь огибающей плюс управляемый усилитель (VCA), только “запускается” он не от нажатия клавиши, а при превышении входным сигналом порога срабатывания гейта THRESHOLD.

Большинство гейтов имеют относительно несложный 3-х ступенчатый формирователь огибающей, состоящей из трех частей - нарастания ATTACK, удержания HOLD, и плавного затухания RELEASE.

 

В момент превышения входным сигналом порога срабатывания THRESHOLD (вверху) запускается специальный триггер, запускающий в свою очередь формирователь огибающей гейта, и тот - начинает последовательно вырабатывать три составных части управляющего напряжения для VCA (в середине). В первый момент после запуска формируется ATTACK, затем - до того момента, когда входной сигнал станет меньше порога срабатывания - сохраняется достигнутое состояние. После того, как входной сигнал станет меньше THRESHOLD - триггер (TRIGGER) изменяет своё состояние, и начинают формироваться следующие две части огибающей. Под действием этого напряжения VCA изменяет свой коэффициент усиления, и получается результирующий (обработанный гейтом) выходной сигнал (внизу).

Естественно, что динамика обработанного гейтом сигнала - будет отличаться от исходной. Сигналы, лежащие ниже порога срабатывания, будут полностью подавлены. У сигналов же выше порога - атаки будут зависеть от соотношения их исходной скорости и времени открывания гейта, т.е. результирующая - может быть как более “резкая”, так и более плавная. Аналогично - и с процессом затухания сигнала RELEASE. С той только разницей, что затухание исходного сигнала гейтом не удлинить. Можно только укоротить...

Именно это свойство гейта - менять динамику сигналов - как раз и является той главной причиной, по которой гейт получил столь широкое распространение.

Наверное, ни для кого не будет “откровением свыше” тот факт, что в настоящее время основным применением гейта является запись ударных инструментов - барабанов, “железа”, и пр. Вот при обработке гейтом именно этих сигналов - все его потенциальные возможности раскрываются наиболее полным образом. Можно “отрезать” излишне длинные тянущиеся “хвосты” у барабанов, сделать более резкими атаки, а при известном навыке - даже “растянуть” время звучания атаки. Вплоть до того, что вместо одного удара - будут слышаться... два! Да - да, это действительно так! Только для этого гейт должен быть “настоящим”, полнофункциональным, а не - одной “ручкой” в компрессоре...

Ранее обычный ныне гейт носил более претенциозное название - NOISE GATE (нойз-гейт), при этом подразумевалось, что главным его предназначением - будет шумоподавление, борьба с шумами. Но довольно быстро выяснилось, что “шумодав” из гейта - по большому счёту - просто “никакой”. Нет, конечно, шумы паузы - он убирает прекрасно, с этим никто не спорит. Только... это практически никому не нужно. Представьте себе, что у вас имеется дикторский текст, записанный с высоким уровнем шумов (типа “шипения”). Как бы ни был силён этот шум - слух довольно быстро к нему адаптируется, и всё в целом воспринимается более-менее нормально. Пропустив же этот сигнал через гейт, вы получите блаженную “мёртвую” тишину в паузах... и дикое шипение, сопровождающее текст при открытом гейте! То - тишина, то - шипение... И смена их - происходит очень быстро. А ведь для адаптации нужно хоть какое-то время, но этом случае - его просто нет. Тут любой слух спятит!

Такое, принципиально неверное, применение гейта - к сожалению, можно слышать весьма часто, например - на видеокассетах, где голос переводчика (записанный ранее на аналоговую дорожку VHS) накладывается на “родную” дорожку HI-FI Stereo. В результате - получившуюся запись слушать просто невозможно! Особенно в тихих местах, где в звуки - например, капающей воды - вдруг “врывается” с диким шипением голос переводчика. Несколько ослабить этот нежелательный эффект помогает имеющийся в хороших гейтах регулятор “глубины закрывания” RANGE. Он позволяет установить величину, на которую гейт будет уменьшать свой коэффициент передачи в закрытом состоянии. Реально - в случаях, аналогичных описанному - уменьшение уровня шумов в паузе, при котором результат ещё более-менее приличен, составляет величину не более 10 - 15 дБ. При больших величинах - уже начинает проявляться описанный ранее эффект. Хотя, конечно, в любом случае это - полумера, и лучше оставить “кесарю - кесарево”, т.е. для борьбы с шумами использовать специально для этих целей созданные устройства - денойзеры. У них это лучше получится...

Кроме вышеуказанных, в некоторых “навёрнутых” гейтах имеются и другие регулировки - например, предзадержки DELAY, гистерезиса, фильтрации, и т.д. и т.п.

Рассмотрим подробнее некоторые из них, в порядке убывания распространённости.

Обязательной составной частью любого мало-мальски приличного гейта являются перестраиваемые обрезные НЧ и ВЧ фильтры KEY FILTER, в самом крайнем случае - разрывные гнёзда SIDE CHAIN INSERT, как в компрессоре. (Иногда, в некоторых моделях, можно встретить и гнезда для подачи внешних запускающих сигналов - EXT.KEY.)

Назначение этих фильтров и гнёзд - такое же, как и в компрессоре, для изменения характеристик канала управления. (И точно так же - они не влияют на тембр самого сигнала!) Но если в компрессорах применение фильтров и эквалайзеров в SIDE CHAIN - это в значительной степени “экзотика”, и сплошь и рядом можно прекрасно обходиться и без таковых, то в гейтах - увы! Без хороших фильтров - никуда. Причём, если в SIDE CHAIN компрессора ставится обычно эквалайзер, то в гейтах - ставятся именно обрезные фильтры, как правило - перестраиваемые, и при этом - отдельные для НЧ и для ВЧ.

Необходимость в них вызвана, главным образом, спецификой применения большинства гейтов - для записи ударных. Инструменты этой группы расположены весьма близко друг к другу, обладают высокой громкостью, и отделить их друг от друга - задача не из простых. (Собственно, как раз для этого гейт и применяется - если временно оставить в стороне задачи художественного изменения исходных звучаний.)

Например, два близко расположенных микрофона снимают звучание, один - барабана, другой - тарелки. По громкости - их не различить, да и в разных местах песни она может существенно различаться. Что остаётся? Правильно, спектр! Настраиваем фильтры в каналах управления гейтов этих двух микрофонов таким образом, чтобы гейт барабана воспринимал только его основной тон, в области средних частот, а гейт тарелки - чтобы воспринимал только её ВЧ-составляющие. Проконтролировать точность настройки фильтров поможет имеющийся в обязательном порядке в таких (с фильтрами) моделях переключатель KEY LISTEN - “прослушивание управляющего сигнала”. Вот теперь, независимо от громкости звучания того или иного инструмента, его гейт будет управляться только его сигналом, а остальные для него - как бы “невидимы”.Можно переходить и к художественной части... (Правда, это - тема совсем другого разговора.)

Рассмотрим теперь работу всего цикла гейта “в целом”. Что касается начальной части сигнала - атаки - то здесь, как правило, особых проблем не возникает. Входной сигнал нарастает быстро, с хорошим уровнем, и гейт срабатывает чётко. Совсем другая картина - на спаде сигнала. Не секрет (хотя и не общеизвестно), что затухание сигналов большинства инструментов не является ровным и плавным, а имеет волнообразный характер. Для слуха это малозаметно, привычно, но для электроники - совсем другое дело. Гейт в этот момент начинает периодически переключаться из открытого состояния в закрытое, “дёргаться”. На слух этот эффект воспринимается очень неприятно. Как быть?

Частично справиться с этой проблемой помогает регулятор времени удержания HOLD, но только частично. Он лишь задерживает момент начала закрывания гейта, но не избавляет его полностью от “болтанки”. Для этого применяется особое устройство - триггер с гистерезисом. Не пугайтесь “страшного” слова! Это всего-навсего означает, что в таком гейте имеются два порога срабатывания - один на открывание, и один - на закрывание, причём “порог на закрывание” - всегда меньше, чем на открывание.

Например - если установлен гистерезис в 7дБ, а порог срабатывания равен +12дБ, то гейт начнёт закрываться только в том случае, если входной сигнал станет меньше +5дБ, а не +12дБ, как в обычном гейте. Это позволяет обеспечить надёжное, без “болтанки”, закрывание гейта - и к тому же без задержки HOLD, необходимость в которой при этом отпадает. Справедливости ради заметим, что в некоторых моделях гейтов среднего ценового класса эта функция уже является встроенной, т.е. некоторый небольшой гистерезис имеется в приборе “от рождения”. Однако величина этого гистерезиса устанавливается изготовителем, и его изменение вам недоступно.

В некоторых гейтах имеется режим со “странным” названием - DUCKER, или просто DUCK. Если перевести дословно, то первое - это “поганка малая”, второе - утка. Н-да...

Это что ещё за цирк?

История появления этого термина в точности не известна, а означает он всего-навсего инверсный режим работы гейта, т.е. при превышении входным ( или управляющим) сигналом порога срабатывания - гейт не открывается, а... закрывается! Этот режим может применяться как спецэффект, но основное его предназначение в другом - для уменьшения уровня одного сигнала другим, который в данном случае играет роль управляющего.

Для этого управляющий сигнал (например, голос) подаётся не на звуковой вход гейта, а на его управляющий вход EXT. KEY. На звуковой же вход - подаётся тот сигнал, уровнем которого вам надо управлять (например, фоновая музыка). При появлении на управляющем входе голоса - гейт срабатывает “наоборот”, и громкость фоновой музыки - уменьшается. Такое использование гейта часто встречается на радиостанциях, в системах “Public Address”, в телевидении и т.д. и т.п.

 

Процессоры пространственной обработки сигналов. 

Процессоры пространственной обработки сигналов - чаще не совсем строго называемые просто ревербераторами - являются неотъемлемой частью любой современной студии и концертного зала. Своим появлением они обязаны повсеместному внедрению электроники - микрофонов, усилителей, и пр. - в практику звукозаписи и звукоусиления. Как только музыка вышла за пределы оперной сцены и академических концертных залов - начались поиски новых выразительных средств и художественных приемов, для получения оригинальных звучаний и создания спецэффектов. На этом пути ревербераторы были самым первым и естественным шагом. Действительно, ведь далеко не каждый зал обладает реверберацией - к примеру - как в Домском соборе или Тадж-Махале! Системы искусственной реверберации сняли эти ограничения. Путем моделирования, простого копирования, или синтеза характеристик не существующих в реальности помещений – стало возможно практически в любом месте получить нужные вам звучания. Современные процессоры позволяют, кроме разнообразных видов реверберации, более-менее похожих на естественные, создавать и целый ряд звучаний, которые в принципе невозможно получить в естественных условиях, но без которых палитра выразительных средств современной музыки стала бы сильно обедневшей - таких, как GATE REVERB, INVERS REVERB, и некоторых других.

Для того, чтобы как можно полнее разобраться в этих и других эффектах, вспомним - каким образом создается реверберация в реальных помещениях, и из каких основных частей состоит собственно сам реверберационный процесс.

 

В точке А находится источник сигнала (исполнитель), а в точке В - находится приемник сигнала (слушатель).

Очевидно, что звук от исполнителя до слушателя может доходить многими путями - прямой звук (обозначен цифрой “0”), и звук, отраженный от стен и других отражающих поверхностей (цифры 1 и 2). Правда, на этом рисунке не отображены отражения от потолка и пола - но, при желании, вы можете сделать это сами для любого интересующего вас помещения.

В результате, с учетом всех существующих в данном месте отражений сигналов, процесс затухания звука в помещении будет иметь вид, похожий на изображенный на

Прямой звук (линия “0” на рис.1) - несет информацию только о расположении источника слева или справа от слушателя. Какой-либо иной пространственной информации в нем не содержится.

Первичные отражения (линии 1 на рис.1) - несут информацию о размерах помещения и месте расположения в нем исполнителя. Называются так потому, что эти сигналы претерпевают по пути к слушателю только одно отражение от ограждающих поверхностей. Как правило, эти звуки приходят к слушателю также спереди, со стороны исполнителя. Именно они вносят наибольший вклад в пространственное ощущение акустики зала. (Строго говоря, существуют также и первичные отражения от задней стены. Однако, наличие их хоть сколько-нибудь значительной, ощутимой на слух величины является серьезным дефектом концертного зала, т.к. звук при этом начинает “лупить в затылок”, что весьма неприятно. К сожалению, это - довольно широко распространенное явление во многих залах, особенно - с гладкой и плоской сплошной задней стеной.) Иногда - в случае большого количества первичных (по своей сути) отражений - их еще дополнительно “сортируют” по времени прихода к слушателю. При этом к собственно первичным (ранним) отражениям иногда относят те, для которых интервал между временем их прихода к слушателю и прямым звуком не превышает 60 миллисекунд. Это связано с интегрирующими свойствами нашего слуха, который звуки, находящиеся в пределах этого интервала воспринимает более-менее слитно, как единое целое. Эта группа отражений повышает субъективно воспринимаемую громкость звука, и в хороших залах они имеют довольно значительную величину, благодаря специально принятым при постройке мерам.

Вторичные и последующие отражения  - это звуки, уже “переотраженные”, от одной стены - ко второй, от второй - к третьей, и так далее. По мере возрастания номера отражения - изменяется их АЧХ, отражения рассеиваются, “расщепляются”, увеличивается их число, и в конце концов - отзвуки уже перестают восприниматься по отдельности, сливаются в один сплошной, плавно затухающий отзвук (“хвост”) - собственно реверберацию.

Очевидно, что затухание звука - это процесс по самой своей сути, строго говоря, бесконечный. Поэтому для того, чтобы иметь возможность сравнивать между собой различные реверберационные процессы, для определения времени реверберации было предложено измерять так называемое RT60, иначе часто называемое временем стандартной реверберации. Это - время, за которое уровень затухающего (реверберирующего) сигнала уменьшается на 60 дБ.

Однако, помещения, имеющие одинаковые величины RT60, сплошь и рядом звучат абсолютно по-разному. Почему? А дело в том, что при измерении RT60 не учитываются частотные характеристики помещения. Более точную картину можно получить, если измерять RT60 по отдельности в нескольких частотных полосах. Вот тогда - будет возможно исследовать частотную характеристику реверберации, которая в общем случае должна быть несколько различной для разных видов музыки. Однако в большинстве залов эта характеристика близка к линейной, с небольшим уменьшением времени реверберации на низших и высших частотах, чтобы не “бубнило” и не “цыкало”.

Еще одной важной характеристикой реверберации является ее спектральная плотность. Этот параметр имеет размерность 1/Гц, и определяет, сколько пиков и провалов в АЧХ реверберации приходится на частотную полосу в 1Гц. Не вдаваясь излишне в теоретические дебри, скажем только, что чем больше этот параметр - тем плотнее, насыщеннее реверберационный отзвук помещения, и тем менее он “окрашен”. (Вспомните явно и сильно окрашенный отзвук в ванной, или любой другой пустой комнате!) Ведь если просто сложить два сигнала с небольшим сдвигом во времени, то получится эффект “Flanger”. Его АЧХ имеет вид “гребенки”, с чередующимися пиками и провалами. Как это звучит - все прекрасно знают. Но то, что хорошо в качестве эффекта - абсолютно неприемлемо в реверберации как таковой. Если же складываться будет множество сигналов, с различными задержками - то количество пиков и провалов в суммарной АЧХ будет увеличиваться, и они будут располагаться (в идеале) случайным образом. При этом отдельные элементы получающейся “гребенки” становятся более узкими и менее заметными на слух, “усредняются”, и звук становится менее окрашенным и более плотным, ровным. Для увеличения этой плотности (“диффузности”) необходимо, чтобы в создании реверберации принимало участие как можно большее число отражений сигналов от отражающих поверхностей. Поэтому в хороших залах вы не встретите простых плоских стен - для улучшения диффузности получаемого звукового поля их всегда делают изломанными, чтобы как можно больше увеличить число отражений.

В своем развитии системы искусственной реверберации прошли длинный и непростой путь. Исторически - первыми “искусственными ревербераторами” были эхо-камеры (“Echo chamber”). Они представляют собой систему из громкоговорителя и микрофона, размещенных в специальном помещении “сильно неправильной” формы с большим временем реверберации. В них получается “настоящий”, очень красивый реверберирующий отзвук, но изменение его параметров - практически невозможно, и осуществляется с большими трудностями. К тому же такую систему просто физически невозможно взять с собой - ни на концерт, ни на гастроли...

В попытках преодолеть эти трудности была создана первая электронная, а точнее - электронно-механическая система, пружинный ревербератор (“Spring reverb”). Его параметры сравнительно легко изменялись, размеры - были просто мизерными по сравнению с эхо-камерой, и эти ревербераторы в свое время имели огромное распространение. Однако создаваемый ими звук сильно уступал по качеству реальному. Ведь в пространстве помещения звук распространяется по трем осям - длине, ширине, высоте, а в пружине - только по длине. Вследствие этого реверберирующий отзвук был одномерным, т.е. более “тонким”, “жидким”.

Во “втором поколении” искусственных ревербераторов - листовом ревербераторе (“Plate reverb”) этот недостаток был в значительной мере преодолен путем замены пружины металлическим листом. При этом колебания в листе распространялись уже по двум осям - длине и ширине. Это, конечно, еще не три, как в реальном помещении, но все же - прогресс был значителен. Создаваемый этими ревербераторами звук был настолько хорош, что они практически завоевали весь “звуковой мир”, и во многих местах прекрасно работают и поныне. К сожалению, листовые ревербераторы имеют два принципиально неустранимых недостатка. Это весьма высокая чувствительность к акустическим помехам, и большие размеры, ведь - типичный размер применяемого в них стального листа составляет 1х2м! Естественно, что этим практически исключалась сама возможность использования этого типа ревербераторов в концертной, и тем более - гастрольной деятельности. А жаль, вещь хорошая!

Однако - пока успешно развивались различного рода акустико-механические ревербераторы, “электронщики” тоже не сидели сложа руки. Первые (условно!) “чисто электронные” ревербераторы использовали тракт записи-воспроизведения магнитофонов со сквозным каналом. Сигнал, снятый с выхода усилителя воспроизведения, подавался “назад” - на вход усилителя записи. Регулируя его уровень, можно было менять время затухания получаемого отзвука, т.е. как-бы “время реверберации”. Конечно, в системах с одной головкой воспроизведения получалась не настоящая реверберация, а просто ряд затухающих повторений исходного сигнала, т.е. обычное эхо.

Вот здесь - хотелось бы сделать маленькое отступление. Так как довольно долгое время в нашей - да и не только - стране этот вид “ревербераторов” имел наиболее широкое распространение, то создаваемый ими эффект многие и называли, и продолжают называть реверберацией. Неверно! Это - именно эхо, и ничего более! Или, по нашей традиции использовать иностранные слова вместо своих собственных - дилей, от английского Delay - задержка. Реверберация - это именно слитное послезвучание, в котором невозможно различить отдельные повторы. Если же четко слышен ряд отдельных повторов исходного сигнала - тогда это дилей. Вместо “длинного” слова “реверберация” иногда ее называют по-простому “холл”. Это не совсем верно, т.к. холл - это всего лишь один из режимов работы современных цифровых ревербераторв, но - не смертельно. А вот путаница в терминологии может слабонервного звукорежиссера довести и до инфаркта, если доведется услышать требование музыканта - “сделай мне на гитару ревер, но без холла...”. (???...) (Это, кстати, не выдумка автора, а вполне реальная фраза, услышанная в одной из студий). Давайте лучше называть вещи такими, какие они есть. Это и ваше время сэкономит, и работать будет легче...

Но - вернемся к теме. Ни о какой диффузности, настоящей реверберации в простейших “одноголовочных” устройствах и речи быть не могло. (Кстати, в англоязычной литературе этот класс устройств имел совсем другое название - “Echo Machine”, дословно - “машинка для создания эхо”.) Однако постепенно число головок воспроизведения увеличивалось, усложнялись алгоритмы создания обратной связи, и некоторые модели таких ревербераторов имели весьма хорошее (конечно, по тому времени) звучание - например, HOLLYWOOD, и некоторые другие. Но - прогресс в развитии микроэлектроники привел к “естественной смерти” этого класса устройств, и к полной замене их цифровыми ревербераторами.

По своей сути - цифровые ревербераторы являются просто твердотельными аналогами магнитофонных ревербераторов, только значительно более сложными. Для того, чтобы проще было понять процесс их работы, посмотрим на примерную упрощенную структуру “магнитофонного ревербератора” .

 

Сигнал со входа подается на головку записи 1 , записывается на пленку, и затем воспроизводится с нее головками 2 и 3. Сигналы с головок 2 смешиваются в нужной пропорции в микшере, и через регулятор тембра в цепи обратной связи (позволяющий изменять частотную характеристику получаемой реверберации) подаются снова на запись. Этим создается основной реверберационный “хвост”. Сигналы с головок 3 также смешиваются в своем микшере, и подаются на выход всего устройства через регулятор баланса, позволяющий регулировать соотношение прямого (“Dry”) и реверберирующего (“Wet”) сигналов для установления требуемого уровня реверберации.

В цифровых ревербераторах также имеются все эти элементы, только некоторые из них носят другие названия.

“Сердцем” любого цифрового процессора является многоотводная цифровая линия задержки – “Multi-tap digital delay line”, на которую подается оцифрованный входной сигнал. (Эта линия выполняет функцию, аналогичную роли ленты в магнитофоне.) Для создания реверберации сигнал снимается со многих точек этой линии, называемых “отводами” (или, по-простому, “съемами”). Английское название этих отводов - “Tap” (отвод, ответвление). Каждая из этих точек съема сигналов с линии задержки выполняет роль головки воспроизведения в магнитофоне - 2 или 3. Естественно, что в случае с цифровыми процессорами полностью отсутствует главное ограничение магнитофонной техники - на количество головок. Ведь каждая из них имеет какой-то конечный размер, который невозможно уменьшать до бесконечности! А “в цифре” это количество может быть сколь угодно большим. Все ограничивается только мощностью самого процессора и быстродействием памяти. Очевидно, что эти величины на много порядков превосходят достижимые в магнитофонах, вследствие чего последние и вымерли, не выдержав конкуренции с более совершенной цифровой техникой.

Однако - это не относится к пружинным и листовым ревербераторам. Хотя они во многом и потеснены “цифрой”, однако их звучание имитируется, в той или иной мере, практически всеми цифровыми ревербераторами. Но об этом - чуть позже. Да и сами они еще, впрочем, применяются довольно широко.

В меню каждого цифрового ревербератора можно увидеть такое множество самых различных названий предлагаемых эффектов, что глаза разбегаются. Какой же выбрать? И чем, в сущности, они все различаются?

Как правило, несмотря на множество названий, число основных алгоритмов реверберации в каждом процессоре относительно невелико, и даже в самых дорогих моделях обычно не превышает трех - пяти. Число же созданных на их основе пресетов (пользовательских и заводских) может быть просто огромным!

И отличаются все они только вариациями параметров исходных алгоритмов. (Это, кстати, объясняет - почему в недорогих ревербераторах частенько гигантское количество программ, с весьма “эффектными” названиями, звучат уж очень одинаково...)

Обычно - это несколько (2 - 3) видов реверберации помещений (варианты названий - Hall, Reverb, Room, и др.), плюс... имитация наших старых знакомых, пружинного и листового ревербераторов - Spring и Plate соответственно. Да-да, это именно они! Только “упакованные” в цифры. Ну, и, естественно (куда ж без него!) наше старое знакомое эхо ленточного ревербератора, под названием Delay (задержка), а иногда - и просто эхо (Echo). Вот и все основные алгоритмы. Все - без исключения - рабочие программы создаются исключительно путем изменения множества параметров, входящих в эти алгоритмы, а также сочетания нескольких одновременно работающих алгоритмов для получения сложных, составных комбинированных звуков. Например, реверберация и эхо одновременно: Reverb + Echo.

Следует заметить, что большинство программ имеют в своей основе какой-либо набор характеристик существующих залов, только несколько модифицированный и “разъятый” на составные части - отдельно информация о структуре ранних отражений, отдельно - о самой реверберации.

Несколько особняком стоят программы, эмулирующие акустику реальных помещений - например, такие, как широко известный Тадж-Махал. В этих случаях возможности пользователя для изменения звучания чаще всего сильно ограничены - ведь не может же Тадж-Махал быть размером с кухню!

Итак - параметры... Здесь следует сразу оговориться, что последующее изложение не претендует на исчерпывающую полноту, т.к. у многих производителей (а если честно - то, увы, у подавляющего большинства!) одни и те же самые параметры именуются настолько по-разному, что “с ходу” далеко не всегда можно сразу разобраться, о чем вообще речь идет!

В соответствии с реверберацией реальных помещений все доступные для изменения пользователем параметры можно разделить на две основные группы - управление ранними отражениями (“Early reflections”) и собственно реверберационным “хвостом” (“Reverb”).

 

К сожалению, есть только один параметр, более-менее одинаково называющийся у разных изготовителей - “Pre-Delay”, интервал времени между приходом к слушателю (точнее, в данном случае - поступлением на выход процессора) прямого, необработанного сигнала, и моментом появления самого первого задержанного (“отраженного”) сигнала. Хотя и здесь, что называется, “возможны варианты” - встречается также название “IniDelay”.

Следующим важным параметром является характер затухания сигналов ранних отражений, их огибающая - “Liveness”. (Хотя иногда этим термином обозначается лишь регулировка тембра звука ранних отражений по ВЧ.)

Еще один параметр, имеющий “физически” разное применение, это плотность структуры ранних отражений, их диффузность - “Diffusion”. Это различие объясняется тем, что в дорогих моделях изменяется то, что и написано: так как большая диффузность должна создаваться путем увеличения количества самих отражений, то в них именно так и происходит. Каждый одиночный импульс на рис.4 при увеличении этого параметра как бы “распадается” на пачку (“cluster”) из нескольких близко расположенных. К сожалению, в недорогих моделях часто делается по-другому: просто изменяются интервалы между самими отражениями. При этом отзвук становится, конечно, более плотным, но и - более коротким и окрашенным. Иногда этот параметр называется также “Density”.

Естественно также, что необходимо иметь и возможность регулировать громкость ранних отражений, этот параметр чаще всего именуется “ER Level”, или “InitLevel”, хотя бывают и другие обозначения.

В большинстве процессоров имеется возможность выбирать нужный вам вид ранних отражений из нескольких наборов - “Shape”. (англ. “модель”, “образец”), иногда - “ER Type”. Некоторые модели процессоров позволяют пользователю создавать и свои наборы ранних отражений. Это часто используется для создания специальных “нелинейных” эффектов - типа “Gate Reverb”. При этом для каждого единичного отражения вы сами можете установить его время задержки относительно прямого сигнала - Delay, уровень - Level, и положение в стереопанораме - Pan. Но об этом подробнее - чуть далее.

Если посмотреть повнимательнее на собственно реверберационный хвост на рис.2 - то можно заметить, что его единственное, в сущности, отличие от ранних отражений заключается в большей “слитности”. Отдельные повторения сигналов в нем так находятся так близко, что сливаются друг с другом, становятся практически неразличимыми. Во всем остальном - с точки зрения управляющих параметров - они одинаковы.

Точно также для реверберационной части должна быть предусмотрена возможность регулирования времени задержки “REV Delay”, однако здесь существует опять-таки разнобой: в некоторых процессорах это время отсчитывается относительно прямого сигнала, а в некоторых - относительно ранних отражений. Вот и разберись тут...

Аналогично предыдущему, бывают и регуляторы диффузности “Diffusion”, и выходного уровня отдельно для реверберации “Reverb Level”. Хотя иногда последний устанавливается не в “абсолютном виде”, а относительно уровня ранних отражений.

Что касается регулировок тембра - вот тут уже начинаются значительные отличия от имеющихся в ранних отражениях. Вызывается это тем, что они (отражения) поступают напрямую на выход процессора, и на этом их “жизненный путь” в ревербераторе окончен. Длительный же реверберационный “хвост” возможно получить только путем подачи выходного задержанного сигнала снова на вход, чтобы получить последовательность плавно затухающих во времени повторений исходного сигнала. (Этот процесс регулируется параметром “Decay”, или “REV Time” - время реверберации.) Очевидно, что если в цепь обратной связи включить эквалайзер, то будет возможно получить различное время реверберации на разных частотах. Как правило, такой эквалайзер есть во всех современных процессорах.

Разнообразие параметров регулирования АЧХ обратной связи - также, весьма велико. От простейшего регулятора уровня ВЧ “Hi Ratio”, только уменьшающего уровень этих составляющих, до весьма сложных четырех-полосных регуляторов кроссоверного типа. В этом случае устанавливаются как частоты раздела (LO-Xovr, LM-Xovr, HI-Xovr), так и уровень сигналов в каждой полосе (xLOW, xLOMID, xHIGH). При этом регулятор в одной из полос (как правило, на средних частотах) отсутствует, и уровни всех остальных сигналов устанавливаются относительно этого, являющегося для них опорным.

В сложных регуляторах - как правило, возможно не только ослабление сигнала в полосах, но и его усиление, причем эти параметры устанавливаются не так, как мы все привыкли измерять АЧХ - в децибелах, а как множитель относительно общего времени реверберации, показывающий - во сколько раз изменится время реверберации на этой частоте относительно общего.

К сожалению, такие возможности - это редкость, и бывают только в дорогих моделях. В наиболее распространенных процессорах среднего класса чаще всего предусмотрена только возможность регулировать уровень НЧ и ВЧ составляющих обратной связи - “LowRatio” и “HighRatio” соответственно. (Возможные варианты - “Bass Decay”, “Treble Decay”, и некоторые другие.)

Иногда вместо “регуляторов тембра” в цепи обратной связи устанавливаются перестраиваемые обрезные фильтры, ограничивающие полосу частот в обратной связи - НЧ (“HPF”, или “Hi-Pass”), и ВЧ (“LPF”, или “Low-Pass”).

Нет, это не ошибка! Ведь фильтр “Hi-Pass” пропускает высокие частоты, т.е. соответственно обрезает - низкие. И наоборот, “Low-Pass” пропускает низкие частоты, обрезая высокие.

Существует также ряд так называемых “глобальных” регулировок, изменяющих одновременно целый ряд параметров. К ним относится, например, регулировка “Size”, изменяющая размер имитируемого ревербератором помещения. Достаточно часто этот параметр индицируется в метрах - он показывает наибольший линейный размер этого помещения. Как правило, этот регулятор является как-бы “мастер-регулятором” для зависимых от него параметров - таких, как “Spread” и “Shape” - в тех моделях, где последний является регулятором, а не переключателем выбора исходного алгоритма.

В некоторых процессорах имеются алгоритмы, позволяющие синтезировать не существующее в реальности, а придуманное вами помещение. Установите сами его размеры - ширину “Width”, глубину “Depth”, высоту “Height”. Почувствуйте себя строителем!

В таких случаях предусматривается также ряд параметров “помещения”, отсутствующих в других программах. Например (так как звук в помещении распространяется по трем осям - длине, ширине, высоте) - можно выбрать степень “заглушенности” отдельно для каждой пары ограждающих поверхностей - горизонтальных “Height Decay”, и двух вертикальных - по ширине “Width Decay”, и глубине “Depth Decay”. Так как речь может идти только об ослаблении звука, то, естественно, эти коэффициенты всегда меньше единицы. Иногда возможно даже подобрать “Wall Roughness” - степень “неровности” стен!

Кроме описанных выше регуляторов, влияющих на сам характер получаемой искусственной реверберации, в хороших моделях предусматривается также ряд регулировок, позволяющих изменять восприятие этой реверберации, а иначе говоря - опять же регуляторов тембра, только на выходе процессора. Иногда это простейший общий выходной эквалайзер, а иногда - возможно отдельно изменять тембры звучания ранних отражений и собственно реверберационного “хвоста”. Очень полезен может быть включенный на входе процессора эквалайзер (“Pre-Effect EQ”), или же перестраиваемый обрезной фильтр, для удаления из обрабатываемого сигнала нежелательных составляющих (например, мощных НЧ-сигналов). К сожалению, этот фильтр крайне редко встречается...

Несколько особняком стоят параметры стереорежима. Дело в том, что, чисто принципиально, невозможно создать “настоящий” стерео-ревербератор, в котором получаемый с его помощью эффект зависел бы от пространственного расположения источников входных сигналов в стереопанораме. (Что бы ни утверждали рекламные обещания!) Процессоры, именуемые “истинно стереофоническим” на самом деле просто имеют два независимых канала для раздельной обработки сигналов левого и правого каналов. И ничего более! Поэтому честнее было бы называть все электронные ревербераторы “псевдо-стереофоническими”, но это - как вы сами понимаете - “не звучит”. (Хотя и является абсолютно правильным). А раз “псевдо” - значит, должны быть и соответствующие регулировки. И они бывают на самом деле, только редко. Одна из возможных - это, естественно, регулятор ширины стереобазы получаемого сигнала, “Reverb Width”. Кроме него, иногда встречается регулятор “независимости” каналов - ведь в хорошем ревербераторе, по сути, находятся два независимых процессора, для левого и правого каналов. И чтобы получить сложный, красивый пространственный выходной сигнал - необходимо подавать часть выходного сигнала каждого канала на вход другого. ( Параметр “Cross-Feedback”, “X-Feed” и др.) Иногда это просто “общий” выключатель “On/Off”, а иногда этот параметр входит составной частью в какой-либо алгоритм, и может плавно регулироваться в числе других, доступных вам параметров.

Особо хотелось бы отметить еще один момент. Не секрет, что главный недостаток цифровых ревербераторов, в отличие от “живых” помещений – это некоторая “механистичность”, монотонность получаемого звучания. Ведь электроника будет всегда работать и звучать одинаково, будь то хоть в России, хоть в Африке. Реальный же зал – всегда “живой”, отзвук помещения – постоянно, хоть немного, хоть чуть-чуть да изменяется. Воздух движется, изменяется влажность, температура, и т.д. И плюс ко всему – происходит это в разных местах помещения неравномерно. Для имитации этих эффектов в хороших процессорах также предусматриваются различные меры. В простейших случаях осуществляется небольшая модуляция времени задержки специальным инфранизкочастотным сигналом, соответственно, с обычными параметрами модуляции – частотой “Mod Rate”, и глубиной “Depth”. Иногда для этих целей применяется особый, так называемый “псевдослучайный” НЧ-сигнал, при этом пользователь может изменять только глубину модуляции. В совсем уж “навороченных” процессорах имеются особые алгоритмы для придания “живости” звучанию – “Randomization”. Они позволяют, кроме описанной модуляции – только более “хитрой” – изменять случайным образом, но плавно, еще и тембр отдельных составляющих реверберационного процесса.

Несколько особняком от “обычных” - стоит большая группа программ для получения не существующих в природе, “ревербо-подобных” звучаний. Речь идет о “нелинейной реверберации” - эффектах, известных под названиями “Gate Reverb”, “Revers Gate”, “Non-Lin”, и некоторых других.

Почему - несуществующих? Да потому, что не может в реальных условиях процесс реверберации оборваться резко, скачком. Или и вовсе - увеличивать свою громкость с течением времени! А электронный - может...

Все программы и алгоритмы реверберации этого типа работают, естественно, без обратной связи, т.е. никакой сигнал с выхода процессора на его вход не подается, и выходной сигнал целиком и полностью состоит только из ранних отражений. Соответственно - и многие из параметров для них одинаковые, хотя есть и некоторые весьма специфичные, присущие только этому виду эффектов.

 

“Gate Reverb” - это обычные ранние отражения, только не сопровождающиеся последующим реверберационным “хвостом”. При этом уровень этих сигналов, как и положено реверберации, с течением времени уменьшается. Если же их уровень постепенно увеличивается - то это “Revers Gate”, или “Invers Gate”.

Для обоих этих режимов основные параметры - это время длительности послезвучания “Decay” и регулировка характера огибающей, затухающей или возрастающей - “Envelope”. Иногда “Revers Gate” и “Invers Gate”.- это две различных программы, иногда - одна и та же, в последнем случае просто переключается направление огибающей “Envelope Direction”, “Normal” - обычное, или “Reverse”.

 

Так как этот режим ни с какой стороны не похож на реверберацию, даже если его “перевернуть вверх ногами”, то он и носит “не-реверберационное” название “Non-Lin”. При этом у огибающей процесса есть все положенные гейту составляющие - “Attack”, “Hold”, и “Release”. Конечно, никакого реального гейта при этом не используется, этими регуляторами устанавливается только время нарастания или уменьшения амплитуд каждой из отдельных составляющих процесса. Или, иначе говоря, по аналогии с ленточным ревербератором - уровень сигнала, снимаемого с каждой из множества воспроизводящих головок. Например, сигнал с первой головки поступает на выход с уровнем -40дБ, со второй -30дБ, третьей -20дБ, четвертой -10дБ, пятой - “0”дБ. Если при этом временной интервал между задержанными сигналами составляет, скажем, 25мС, то время “Attack” (полного нарастания уровня выходного сигнала до номинального) будет равно 100мС. Вот именно это время и устанавливается этим параметром. Аналогично и с остальными временами.

(Естественно, это только для иллюстрации! В реальности - интервалы между задержанными сигналами различны, соответственно - и амплитуды будут разниться несколько по-другому.)

Справедливости ради следует отметить, что иногда в ревербератор встраивается и “настоящий” гейт, с полным набором положенных ему регулировок. Это в ряде случаев позволяет получать довольно интересные эффекты, но при этом процессор может использоваться только для одного инструмента одновременно, т.к. иначе гейт просто “не поймет”, на какой именно сигнал ему, бедняге, реагировать...

Однако рассмотрение всех возможных эффектов, которые можно получать с помощью цифровых процессоров - это тема для отдельного, и немалого, обзора. Здесь же упомянем лишь, что практически все эффекты, имеющиеся в том или ином современном процессоре, можно задействовать одновременно, для получения более сложных и интересных звучаний. Например, можно сочетать реверберацию с фленджером, хорусом, или питч-шифтом (“Pitch-Shift”), при этом получая просто головокружительные, неземные звучания!


--------------------------------------------------------------------------------


Микширование. 

Эквализация “вообще”

Когда вы приступаете к микшированию песни, первый ваш шаг – эквализация каждого инструмента в отдельности. Наиболее распространенная ошибка, присущая неопытным звукорежиссерам – это включение эквалайзера до того, как они услышат само звучание того, что они собираются эквализировать.

Не трогайте ручки до того, пока точно не узнаете, что именно вы хотите сделать!

Сначала определите, что со звуком не в порядке, и если он вас в принципе не "ломает" – не разрушайте его.

Вырезание “мутной” нижней середины (100 - 800 Hz): слушайте каждый инструмент в отдельности, не звучит ли он мутно. Бочку почти всегда необходимо “осветлять” если, конечно, вы не сводите хип-хоп или рэп. Другие инструменты, потенциально требующие осветления – это томы, бас-гитара, пиано, акустическая гитара и арфа.

Звуковая “муть” обычно сосредоточена в районе 300 герц, хотя может находиться и в более широком диапазоне – от 100 до 800 герц. Будьте благоразумны, – если вы слишком сильно ослабите нижнюю середину, инструмент станет звучать тонко, так как именно здесь находится основа большинства звуков, так что всегда проверяйте, не утратили ли вы эту основу. Иногда внесенные вами изменения в АЧХ необходимо скомпенсировать увеличением усиления на низкочастотном участке спектра – в районе 40 – 60 герц.

Вырезание “раздражающей” середины (1000 – 5000 Hz): давите любые чрезмерно раздражающие частоты, расположенные в диапазоне от 1,000 - 5,000 герц. Обработка вокала, электрогитары и тарелок (включая хай-хэт) часто требует ослабления среднечастотной части спектра. Добротность контура при этом устанавливайте как можно более высокой, чтобы не разрушать среднечастотную часть звуковой основы и не получить в результате унылое удаленное звучание.

Если вы сомневаетесь, правильно ли выбрали полосу пропускания фильтра, начните с самой узкой и начинайте расширять ее шаг за шагом, слушая при этом, становится ли звук лучше. Поступая таким образом, вы непременно найдете именно ту ширину полосы пропускания, которая наиболее соответствует вашей задаче. Опять же, иногда необходимо компенсировать ослабление среднечастотной части спектра некоторым поднятием “верха”, в особенности, обрабатывая звук малого барабана.

Степень компенсации зависит от стиля музыки - R&B, dance и некоторые виды рока традиционно требуют больше “хруста”, чем музыка других стилей. Country, middle-of-the-road и folk могут звучать “мягче” и не требовать столь значительной коррекции.

Ударные

Эквализация большого барабана

Звукорежиссеры часто пытаются получить один из трех типов барабанного звука:


“Мертвый глухой стук”, характерный для барабанов с одним заглушенным пластиком и тяжелым предметом (кирпич, мешок с песком, основание микрофонной стойки) на корпусе или внутри него,

 


Резонансный звон, получаемый от барабана с двумя пластиками с небольшим отверстием в переднем,

 


“Унылый бум” от барабана с двумя пластиками без отверстий в них, характерный для рэпа, хип-хопа и техно.

 

Первые два типа имеют обычно избыток “мутной нижней середины” в районе 300 Hz – вплоть до 10 дБ - и подъем на несколько дБ верхне-средней части АЧХ (5000 – 6000 Hz). Третий тип тоже имеет небольшой избыток “мути” на 300 герцах и значительный подъем АЧХ в нижней части диапазона (от 40 до 100 герц). Можно слегка придавить и “верха”, уменьшив тем самым нежелательную атаку звука.

Эквализация малого барабана

Звук малого барабана обычно имеет подъем в районе около 5000 – 6000 Hz , и, иногда, небольшой подъем в области 60 – 100 герц позволяющий тонкому барабану звучать “жирнее”. Иногда следует “прибрать” усиление на 300 герцах и уменьшить “шлепок” на частотах от 800 до 1000 герц для придания звуку барабана “округлости”.

Эквализация хай-хэта

Прежде всего, необходимо убрать все, находящееся в нижней и средней части диапазона, что бы избавиться от “мусора”, создаваемого бочкой. Если в вашем распоряжении есть фильтр ВЧ, вы можете использовать его, установив значение частоты среза в районе 300 – 700 герц, причем, это не отменяет использование эквалайзера для подавления “мусора” от ударной установки в целом.

Иногда неплохо добавить суперверха для получения чистого и яркого тембра и уменьшить уровень СЧ в диапазоне от 1000 до 4000 герц. Не забывайте при этом то, что было сказано о полосе пропускания фильтра СЧ – если вы выберете слишком широкую полосу подавления, результатом будет “унылый” шипящий звук.

Эквализация бас-гитары

При обработке звука некоторых бас-гитар необходимо убрать некоторое количество нижней середины (опять же – не переусердствуйте, иначе получите тонкий нечитаемый бас). Так же, часто необходимо поднять усиление в диапазоне около 2000 герц (значительно больше, чем вам кажется, когда вы находитесь в режиме “Соло”). Иногда хорошо бывает поднять “низ” около 40 герц для придания звуку плотной основы.

Эквализация гитары

Обычно при обработке звука гитары бывает необходимо лишь украсить его “поднятием” усиления в диапазоне от 3000 до 6000 герц и слегка опустить бубнящие 300 герц.

Эквализация вокала

Все голоса отличаются чрезвычайно. Принято не эквализировать вокал при записи по той простой причине, что в будущем будет сложно найти то же самое положение регуляторов при необходимости переписать фрагмент. Это прекрасно потому, что, в любом случае, голоса не эквализируют сильно – наше ухо наиболее чувствительно к звукам, лежащим в СЧ диапазоне, а именно там и находится АЧХ голоса.

Кроме того, наше ухо очень чувствительно к естественности звучания голоса, голос должен звучать лучше любого звука в мире, поэтому, важно эквализировать вокал как можно скупее – лишь немного убрать 300 герц, и так же немного 3000 – 4000 герц. Подъем АЧХ исходного сигнала в области верхней середины обусловлен не только гармонической структурой, присущей звуку, но, может быть и следствием применения при записи дешевого или просто плохого микрофона. Так же полезно использовать ВЧ фильтр с частотой среза 60 герц, что бы избавиться от любых низкочастотных шумов и призвуков.

 

Delay

Самый простой способ определить необходимое время задержки – это подмешать delay к звуку любого инструмента, играющего постоянный паттерн (например, малый барабан), что бы легко услышать соответствие времени задержки темпу исполняемого произведения. Как только вы найдете искомое, можете быть уверены, что все кратные ему значения вам тоже подойдут. Задержка более 100 миллисекунд привносит в произведение легкий романтический шарм и используется преимущественно в медленных песнях с румовым объемом.

Delay занимает так много места в миксе, что иногда его включают только в конце строки – именно там, где для него есть место и где он может быть слышен. Вы часто могли слышать задержку 60 – 100 миллисекунд, обычно называемую “слэпом” на фонограммах многих артистов, например, Элвиса Пресли. Этот эффект может быть весьма полезен в случаях, когда “тонкий” звук инструмента (особенно голоса) необходимо сделать полнее, или если необходимо скрыть несовершенную вокальную технику. Фактически, слэп может похоронить несовершенство интонирования практически любого инструмента. С другой стороны, слэп может сделать вокал менее персонифицированным. Если ваш вокалист обладает невероятным голосом - избегайте задержки, дайте его голосу сиять в атмосфере лишь легкой реверберации.

Delay в диапазоне от 30 до 60 миллисекунд обычно называют “удвоение”, поскольку он создает эффект, будто бы партия на инструменте была исполнено дважды. “Битлз” использовали удвоение регулярно – для увеличения кажущегося количества исполнителей и инструментов. Задержка в диапазоне от 1 до 30 миллисекунд используется для уплотнения обрабатываемого сигнала. Уши и мозг не в состоянии уловить разницу между прямым и отраженным сигналом в случае, когда время задержки менее 30 миллисекунд – в этом случае мы слышим один звук, но как бы более плотный. Помимо реверберации, удвоение – один из самых используемых эффектов в студии – возможно, потому, что вообще не воспринимается, как эффект. Если вы поместите исходный сигнал в один стереоканал, а задержанный менее, чем на 30 миллисекунд – во второй, получается звук, “растянутый” между динамиками.

Реверберация

Реверберация – по сути - многократная задержка. Звук после своего рождения путешествует по стенам комнаты в темпе улитки – около 770 миль в час. Он отражается от стен, пола и потолка и возвращается к нам как сотни маленьких задержек. Все эти задержанные звуки собираются вместе, что бы дать нам тот звук, который мы называем реверберацией.

Одно основное правило при работе с ревербератором – это установить такое время реверберации, например, на малом барабане, что бы эхо затухало ДО следующего удара в большой барабан. Если соблюдать это правило, звук большого барабана останется чистым и плотным. Это означает, что чем выше темп песни, тем меньше должно быть время реверберации. Хотя, конечно, это правило вполне может нарушаться.

Компрессор-лимитер

Звуки часто в той или иной степени компрессируются – это зависит от динамического диапазона исходного звука. Например, почти все акустические инструменты компрессируются в большинстве случаев, а вокал или бас-гитара компрессируются всегда. Многие звукорежиссеры компрессируют звук большого барабана, но если барабанщик действительно хорош и прекрасно управляет громкостью каждого удара, компрессией вполне можно пренебречь.

Многие инструменты компрессируются только тогда, когда помещаются в микс. Например, крайне редко фортепиано компрессируют само по себе – обычно, это делают, помещая его в микс (особенно, “заполненный” микс). Вышесказанное справедливо и для акустической гитары. Фактически, чем заполненней микс, тем больше звуков и отдельных нот компрессировано. Общий уровень компрессии микса более значим, чем уровень компрессии любого из компонентов микса. Однако, независимо от того, каким методом добиваются необходимой глубины компрессии, разные стили музыки требуют индивидуального подхода.

Например, поп-музыка имеет значительно больший общий уровень компрессии, чем кантри или панк. Это можно услышать, как своего рода “глянец” (который иногда вызван перемодуляцией). По показаниям индикаторов кассетной деки можно оценить уровень общей компрессии музыкального материала. Чем “ленивее” двигаются индикаторы, тем сильнее компрессирован микс. Так что выбор правильного значения общей компрессии – за вами, слушайте музыку, сравнивайте, и выбирайте свои собственные значения компрессии в соответствии со своим вкусом.

Регулировка уровня

Когда музыканты жалуются, что смикшированная песня не звучит так, как им бы хотелось (но не знают, почему), часто причиной этого является неправильный уровень громкости какого-то инструмента, помещенного в микс. В этом случае звукорежиссер начинает заново эквализировать треки, изменять применяемые эффекты, что бы удовлетворить группу, хотя реальная причина недовольства музыкантов вполне может быть заключена в том, что ритм-гитара звучит слишком громко по отношению к вокалу или неправильно выбран баланс между большим барабаном и бас-гитарой.

В некоторых случаях, общая громкость микса может изменяться. При этом лучше не использовать мастер-фейдера – исключая, может быть, fade-in в начале микса и fade-out в конце. Плавное появление звука в начале песни создает очень красивую и гладкую динамику произведения в целом. “Битлз” использовали этот прием в "Eight Days a Week.". Мне даже приходилось слышать песни, где общая громкость плавно уменьшается в конце, потом снова возрастает до максимума, после чего снова уменьшается и возрастает опять. Не менее круто слушается эффект, когда общая громкость изменяется в середине песни. Такое изменение общей динамики может быть очень эффективным.

Вы можете делать и более тонкие динамические нюансы, незначительно изменяя общую громкость микса или отдельных инструментов в разных местах. Например, можно поднять громкость гитары в припеве или поднять уровень малого барабана с эффектом в паузах лидирующей партии. Или в проигрыше в конце песни немного поднимите уровень бас-гитары и большого барабана. Такие маленькие, казалось бы, изменения баланса вполне могут придать дополнительное обаяние для вашего микса.

Панорамирование

Если вы правильно используете панорамирование, вы вполне способны получить прозрачный микс с ясно слышимыми инструментами. Но если вы считаете, что какие-либо правила – не для вас, что ж, можете творить. Иногда необычное панорамирование может положительно повлиять на драматургию вашего микса. Рассмотрим типичное размещение некоторых инструментов в панораме микса. Но помните – не мешайте самой музыке диктовать свое панорамирование.

Очень редко случается, когда большой барабан расположен где-нибудь, кроме как в самом центре панорамы, прямо между динамиками. Когда звук размещен в центре между динамиками, вы, вместо одного заставляете оба динамика работать на вас, облегчая тем самым их задачу в передаче плотных звуков – таких, как большой барабан или бас-гитара. В случае с большим барабаном это имеет смысл и потому, что он обычно расположен посередине ударной установки.

Но в случае, когда звучит ударная установка с двумя большими барабанами (double-kick), при их панорамировании может возникнуть интересная дилемма. В зависимости от того, как часто играет второй большой барабан, оба барабана слегка панорамируют - в левый и правый канал. Некоторые звукорежиссеры первый барабан оставляют в центре, а панорамируют только второй. Глубокое панорамирование двух барабанов по каналом обычно не применяется, хотя иногда и к этому можно подойти творчески.

Малый барабан тоже чаще всего размещают в центре, хотя некоторые звукорежиссеры предпочитают смещать панораму чуть в сторону – особенно при записи джазовой музыки. Но в случае, если звучание малого барабана плотное и сильное, с большим количеством реверберации, предпочтительнее, все же оставить его в центре.

Хай-хэт в большенстве случаев помещают со смещением 45 градусов в любую из сторон – это естественное его положение в ударной установке. Однако, если ваш микс заполнен или необходим дополнительный пространственный эффект, допустимо поместить хай-хэт в один из каналов полностью. В музыке хаус или хип-хоп хай-хэт часто не только полностью панорамирован в одну сторону, но и перемещается по панораме в течение песни. Известны случаи, хай-хэт помещен в один канал, а delay от него – во второй.

Для пущего "кайфа" томы располагают полностью слева и справа, хотя иногда можно поместить их ближе друг к другу – так, как они расположены в барабанной установке. Флор том обычно помещают глубоко сбоку, однако, он вполне может оказаться в центре, по той же причине, почему в центр помещаются большой барабан и бас-гитара – они обладают мощным звуком и привлекают к себе много внимания. При записи джазовой музыки бас может располагаться не только в центре, но и быть панорамирован в одну из сторон.

Почти всегда против правил размещение лидирующего вокала где-либо еще, кроме центра. Если вокал прописан двумя микрофонами, спет дважды или обработан каким-либо эффектом со стереозвучанием, голосовые каналы размещают слева направо – в диапазоне между 11:00 и 01:00. Панорамирование бэк-вокальных треков всегда зависит от вокальной аранжировки. Когда у вас есть только одна партия бэков, вы не можете поместить ее в центре, так как там уже присутствует основной голос. Глубокое панорамирование бэк-вокала в одну из сторон тоже является ошибкой, потому что делает ваш мих несбалансированным.

Солирующее фортепиано обычно записывается стереопарой и панорамируется. Низкие стринги панорамируются налево, высокие – направо – именно так они расположены на фортепианной клавиатуре. Это, вероятно, самое строгое правило панорамирования. Вам лучше застрелить пианиста до записи, чем поместить высокие звуки фортепиано в левый канал! J

Панорамирование гитар основано на тех же принципах. Часто оно продиктовано необходимостью размещения в миксе “чего нибудь еще” – для уплотнения. В этом случае можно уплотнить звук гитары, стереофонизировав его. Духовые и стринги тоже лучше стереофонизировать. Для этого можно использовать при записи несколько микрофонов, или записать их партию дважды, на разные треки. На худой конец, можно использовать временную задержку. В случае, когда микс достаточно заполнен, эти инструменты не следует максимально разводить по панораме – вполне достаточно будет “частичного стерео” или даже моно. Эффекты, как задержка, флэнжер, хорус фэйзер, гармонайзер, ревербератор могут быть панорамированы независимо от инструментов, от которых эти эффекты произведены.

И что же в перспективе?

Все миксы в мире созданы при помощи всего четырех инструментов – громкость, эквализация, панорамирование и эффекты. Все, что вы делаете с ними – это их подбор. Фокус в том, что бы, использовать оборудование для улучшения, подчеркивания, оттенения, создания драматургии, или просто для того, что бы не мешать музыке жить своей жизнью – независимо от стиля самой музыки. И путь создания этого балланса только один – искусство сведения. Как музыканты изучают искусство создания музыки, так и звукорежиссеры должны изучать технологию и имеющееся оборудование, что бы владеть искусством звукозаписи. Разные люди по разному представляют себе, что такое “искусство”. Однако, вы сами для себя должны уяснить, что же это такое. И только тогда начинайте творить его!

 


--------------------------------------------------------------------------------


Что мы измеряем? 

Уже много тысяч лет - мы, сами того не подозревая, живем в мире цифр. Мы измеряем в цифрах все - один килограмм конфет, две шоколадки, пол-литра “жидкости” и др. При этом мы применяем так называемые “вещественные” единицы измерения - граммы, метры, ниты, атмосферы, литры и т.д.

Однако - как ни странно - существуют и весьма широко используются также и нематериальные единицы измерения, причем не только в ядерной физике, где их огромное количество- странность, очарование, цвет и др. - но и в обычной повседневной практике.

Об одной из таких единиц, причем “дважды экзотической” - децибеле - эта статья.

Почему же экзотической, да еще дважды?

Во-первых - не существует воплощенного “в металле” эталона децибела, его нельзя “повертеть в руках”, пощупать. Платино-иридиевые эталоны метра, килограмма - существуют, а децибела - нет.

Во-вторых, децибел - это не целая, а дольная единица. Мы часто пользуемся целыми (грамм, метр) иногда - кратными (КИЛОграмм, КИЛОметр), но практически никогда - дольными.

В самом деле - часто ли вы используете дециметр или дециграмм? Никому же не придет в голову сказать: "у меня дома потолки 27 дециметров”! Так откуда же взялась и для чего нужна сия малопонятная единица? Казалось бы: есть вольты, герцы, амперы... Чего еще желать? Однако - не так все просто! Посмотрите на два следующих рисунка:

На рис 1 изображены две частотные характеристики.(На этом рисунке по вертикали отложено реальное выходное напряжение исследуемого устройства в вольтах).

 

Как видим, эти две АЧХ не очень-то похожи. Идем далее (рис.2):

 

На рис 2 по вертикали отложены не вольты, а децибелы. Сразу стало видно, что эти характеристики идентичны, только одна находится чуть выше, а другая - ниже.

На самом деле все четыре характеристики принадлежат одному и тому же регулятору тембра, просто характеристики 1 и 3 снимались при подаче на его вход сигнала в 1Вольт, а 2 и 4 - 100 милливольт Очевидно что сравнение характеристик устройств по Рис.2 более удобно. Характеристики “в децибелах” не зависят от реальных физических величин сигналов, применяемых в процессе измерений. Это - одна из главных причин того, почему логарифмический способ отображения АЧХ получил наибольшее распространение.

Хотя на самом деле, помимо удобства чтения графиков, существует и другая, гораздо более существенная и глубокая причина: по закону Вебера-Фихнера между воспринимаемым ощущением и вызывающим его внешним воздействием имеется логарифмическая зависимость, т.е. чтобы ощущение изменилось “НА” какую-то величину, вызвавшее его воздействие должно измениться “В” раз.

Пояснить это можно на следующем примере: от 20 до 40 Герц -одна октава, и от 10000 до 20000 Герц -тоже одна октава. Только в первом случае частота изменилась на 20Гц, во втором - на 10000Гц, а результат - одинаков: и в том, и в другом случае частота изменилась “В” два раза и мы слышим повышение высоты звукового тона “НА” одну октаву. Таким образом, отображение данных в логарифмическом масштабе нам просто по-человечески “ближе”.

Ранее, довольно давно, в связи широкое применение получила единица НЕПЕР, основанная на натуральных логарифмах и названная в честь их изобретателя Дж.Непера (1550-1617г). 1 Непер соответствует изменению уровня сигналов в =2,718 раз (в “е” раз).

Вот это интересно! Непер существует давным-давно, а пользуемся - децибелом!

И почему именно децибелом, коль уже существуют натуральные логарифмы, а есть еще двоичные и т.д.? “Был ответ на тот вопрос прост...”

Применяемое для вычисления Неперовых логарифмов число “е” - число трансцендентное, и для расчетов крайне неудобное. Поэтому, по свойственной всем нам любви к круглым числам - логарифмы, имеющие в своем основании число 10, и получили более широкое распространение.

На десятичных логарифмах основан БЕЛ - единица, названная в честь изобретателя телефона А.Г.Бела. Однако, при ближайшем рассмотрении, он оказался “слишком крупным”, а вот одна десятая его -“децибел” -оказался в самый раз. Каким образом?

А вот каким: просто повезло. Децибел нам ближе по психофизиологическому восприятию. Один децибел (1 Дб) - это величина, максимально близкая к субъективному порогу восприятия - порогу различения громкости двух сигналов нашим ухом, и именно поэтому децибел занял ведущее место в звукотехнике.

Так как децибел - величина относительная, то с его помощью можно измерять все, что угодно - хоть музыкальные интервалы. Действительно, в одной октаве содержится шесть нотных интервалов, а изменению напряжений в два раза (как бы “на октаву”) соответствует изменение уровня на 6 Дб, т.е. музыкальный звуковысотный интервал в один тон - соответствует одному децибелу. Причем значения совпадают с точностью 0,0004.

Что это - глубинная, скрытая взаимосвязь? Как знать...

Однако, как уже упоминалось, децибел - величина относительная. А как быть,если надо измерять реальные физические величины - вольты, ватты и др?

Да очень просто: надо выбрать опорный (эталонный) уровень от которого и отталкиваться при измерениях. Давным-давно (так уж исторически сложилось) за опорный уровень была принята величина мощности в 1 милливатт на нагрузке 600 Ом. При этом величина напряжения составляет

 

где P=1 мВт - мощность; R=600 Ом - сопротивление.

До настоящего времени эта величина напряжения является опорной для подавляющего большинства измерений.

Однако иногда встречаются и некоторые другие величины. Опорная величина должна указываться после букв дБ. В английском языке приняты две основные величины:

обозначению dBu (русское-дБ) - соответствует опорное напряжение 0,775В; обозначению dBV (русское-дБв) - соответствует опорное напряжение 1В; встречается и обозначение dBm(дБм), для него опорный уровень - также 0,775В.

Как же пользоваться децибелами, как их вычислять?

Очень просто. Для расчета существует всего одна формула :

N=20 x lg(U2/U1),

где U1 - опорное напряжение; U2 - измеряемое напряжение;

. N - их соотношение в децибелах.

При измерении мощности в этой формуле изменяется только одна цифра: первый множитель вместо "20" - заменяется на цифру “10”, а напряжения заменяются мощностью.

Если после расчета результат “N” получается со знаком “минус”, то это значит, что измеряемая величина меньше опорной (эталонной).

Все. На этом ВСЯ математика, связанная с понятием “децибел” - закончена.

Теперь немного о практическом значении некоторых параметров, выраженных (измеренных) в децибелах.

! -- 1dB - минимальное различие в громкости сигналов, уверенно замечаемое большинством слушателей;


3dB - увеличение мощности сигнала (НЕ громкости!) в два раза;

 


6dB - возрастание напряжения в два раза;

 


10dB - увеличение мощности сигнала в 10 раз, а громкости звука - в ДВА(!) раза. (да-да, всего лишь вдвое, увы!..);

 


20dB-возрастание напряжения в 10 раз, мощности - в 100(!!), громкости – ВЧЕТВЕРO(!!!)

 


Если о каком-то устройстве известно, что его коэффициент передачи равен 0dB, то это значит, что выходной сигнал в точности равен входному. И ничего более!

 

Некоторые наиболее распространенные уровни электрических сигналов:


Стандартный “нулевой” уровень 0dB=0,775V ;

 


часто встречающийся уровень +4dB=1,23V ;

 


профессиональный уровень +6dB=1,55V ;

 


бытовой (любительский) Уровень -10dB=0,25V (250 милливольт);

 

Измерение уровней в звукотехнике

Казалось бы, что здесь сложного - измерить напряжение? Подключи вольтметр - и меряй себе на здоровье! Эх, если бы все было так просто! Так легко бывает, наверно, только у электриков. В звуке все гораздо сложнее…

Реальные звуковые сигналы похожи на все что угодно, кроме хорошо всем знакомой синусоиды. При измерении уровней звуковых сигналов результат будет зависеть как от характера анализируемой фонограммы, так и от типа применяемого вольтметра.

“Секрет” здесь заключается в том, что звуковой сигнал имеет ярко выраженный импульсный характер, со значительным пик-фактором. (Пик-фактором называется отношение мгновенной,”пиковой” амплитуды сигнала к его эффективному, действующему значению).

Пик-фактор очень сильно отличается у различных звуковых источников. Для нормально сведенной фонограммы (не “пережатой”) он составляет величину порядка 12 дБ, для речи 18-20 дБ, а уж для необработанной фонограммы, да еще для отдельных треков, а если для ударных... Даже подумать страшно!

Соответственно - и разные типы вольтметров на одном и том же сигнале будут давать различные показания.

Существуют три основных типа вольтметров - вольтметр “средних значений”, “пиковый” вольтметр и вольтметр “действующих значений”, иначе называемый “среднеквадратичный”(RMS).


Вольтметр средних значений (VU-meter, или “волюметр”) исторически появился самым первым, и является самым простым по устройству - показывающий прибор просто включен в диагональ диодного моста.

 

Динамические характеристики измерителя полностью определяются параметрами стрелочного индикатора, а все механические измерители имеют весьма значительный разброс по этим параметрам, соответственно и показывает он по преимуществу “цену на дрова на северном полюсе во время засухи”.

Однако - благодаря его длительному применению - звукорежиссеры накопили богатый опыт работы, позволяющий (при соответствующей практике) правильно оценивать показания измерителя и вносить необходимые поправки “на слух”, с учетом характера звукового материала. Только этим - и ничем иным - и объясняется такая феноменальная “живучесть” этого типа измерителей.

Вольтметр действующих значений (среднеквадратичный) показывает величину напряжения, пропорциональную реальной долговременной мощности сигнала, его “тепловой эквивалент” И в самом деле, лучшие RMS-вольтметры построены именно с использованием термопреобразователей : исследуемое напряжение нагревает термоэлемент, по температуре которого и судят о величине напряжения.

Однако, как вы понимаете, нагрев термоэлемента - дело долгое, измеритель получается крайне инерционным, и применять его для оценки звуковых сигналов - занятие неблагодарное. Другое дело - измерение напряжения шумов.

Запомните!

Измерять уровень шумов аппаратуры можно ТОЛЬКО среднеквадратичным вольтметром! И никаким иным!

При использовании любых других - ошибки в результатах (из-за стохастического характера шумов) абсолютно непредсказуемы!

И вот теперь, постепенно, мы добрались до пикового вольтметра, который в подавляющем большинстве случаев как раз и служит измерителем уровней звуковых сигналов в профессиональной аппаратуре. Однако он в “чистом виде” малопригоден для работы, так как, реагируя даже на самые короткие пики сигнала, будет давать постоянно завышенные показания, а фонограмма при этом будет тихой. Как же быть?

Выход был найден в некотором (намеренном) “ухудшении” параметров измерителя - таким образом, что отдельные, “очень уж короткие” пики сигналов он как-бы “перестал видеть”. Для этого в схему измерителя были введены специальные интегрирующие зарядно-разрядные цепочки, определяющие динамические характеристики прибора. Такие измерители получили название “квазипиковые”, и вот они-то на самом деле и являются теми измерителями, с которыми мы имеем дело в повседневной практике.

Запомните! ВСЕ измерители, на которых написано “Peak” - на самом деле являются КВАЗИПИКОВЫМИ! Единственные чисто пиковые измерители - это индикаторы “Over” на цифровых рекордерах (да и то не на всех).

Самые первые квазипиковые измерители имели время интеграции 60 миллисекунд, что примерно соответствует инерционности человеческого слуха. Время интеграции - это величина, определяющая быстродействие измерителя - или, иначе говоря - длительность тех коротких пиков сигнала, которые измеритель еще “видит”. Более короткие сигналы измеритель, конечно, тоже “видит” - но плохо(слабо).

Постепенно, с ростом технических требований к качеству записей, ужесточались и требования к измерителям уровней. Требовалось все большее отношение сигнал/шум, постоянно возрастал уровень записи (намагниченность ленты), и все меньшим становился запас по перегрузке. (А “цифра”, например не терпит даже малейших перегрузок. Вообще никаких!)

Чтобы более-менее надежно контролировать максимальные уровни сигналов, стали увеличивать быстродействие измерителей. Сначала время интеграции было уменьшено до 10 миллисекунд, а затем - и вовсе до 5 миллисекунд. (Считается, что искажения перегрузки с длительностью менее 5 мс ухо не замечает. Заметим от себя - это смотря КАКИЕ искажения. Цифровые - еще ох, как замечает!)

Но... За все приходится платить. В данном случае - за увеличение быстродействия измерителей - расплачиваться пришлось значительным увеличением разрыва между субъективно воспринимаемой громкостью звучания и показаниями индикаторов. Хотя в случае современной поп-музыки, до предела “сжатой”, закомпрессированной, этот разрыв не очень уж и велик.

Итак... 60-мс измерители удовлетворительно соответствуют субъективному восприятию громкости, но плохо показывают пики сигналов. 5-мс измерители хорошо индицируют пики, но их показания плохо коррелируют с громкостью звука. Как быть? Да очень просто. Решите - что вам, собственно, нужно контролировать?

Если вы обслуживаете передатчик - или другую линию связи - то для вас главное не допустить перегрузки. Смело выбирайте самый быстрый индикатор - и спокойно работайте. А о “плотности” звучания и других художественных особенностях - пусть голова болит у звукорежиссера программы.

А как ему, бедняге, быть?

Тупик? Пока еще нет. Есть два выхода.

Первый - это применение “двойных” индикаторов, которые показывают оба значения - и пиковое, и действующее. Они уже существуют и довольно широко применяются, хотя в их конструкции наличествует легкий оттенок вранья (нестрашного) : индикатор “Peak” реально квазипиковый (см. выше), а та часть индикатора, которая на самом деле показывает истинный RMS-уровень (да-да, есть и такие, только цена “кусается”), стыдливо, по инерции, именуется “VU”.

Но возможен и второй выход. Как знать - может быть, со временем, когда звукорежиссеры накопят достаточный опыт, снова повторится история с волюметром, только на этот раз “с точностью до наоборот”? А как вы думаете?…

 


--------------------------------------------------------------------------------


КАК МЫ ИЗМЕРЯЕМ ? 

Наверное, не будет большим преувеличением сказать, что главные параметры, на которые мы обращаем внимание при выборе аппаратуры - это уровни шумов и искажений. Почему?

Возможно - потому, что практически любые другие - динамические, частотные и др., при наличии желания и некоторой квалификации можно без особых затруднений изменить в любую нужную Вам сторону, а эти - практически неизменяемы. То есть, изменить-то можно, но это потребует полной переделки всего изделия, и маловероятно, что в реальности будет когда-либо осуществляться.

Таким образом, эти два параметра - "объективная реальность, данная нам в ощущениях", и с ними - жить и работать. Как же их измерить, и - что еще важнее - правильно истолковать результат?

ИЗМЕРЕНИЕ ШУМОВ

Как ранее уже писалось, для правильного измерения шумов необходим прежде всего квадратичный вольтметр. Обычные вольтметры - тестеры, и т.д., в том числе и цифровые - для этих целей непригодны. Почему?

Да потому, что все они измеряют другие значения - средневыпрямленное, пиковое, и т.д., и т.п. При этом часто на шкале может быть даже написано "RMS", но это не соответствует истине, т.к. это шкала только проградуирована в этих значениях, а реально измеряется то, что написано выше. Такими приборами можно точно измерять только синусоидальный сигнал:для "синуса" между различными его значениями (средним, пиковым, эффективным) существуют строго определенные соотношения, и поправки на них уже внесены в конструкцию этих приборов. Благодаря этому, при измерении синусоидального сигнала результаты получаются достоверными, но при измерении шумов - увы!..

Так что, если Вы хотите получить при измерении шума достоверные результаты - то прежде всего убедитесь, что применяемый Вами для этих целей вольтметр - истинно квадратичный, а не его "суррогатный братец".

Итак, Вы взяли подходящий прибор, подключили его к выходу исследуемого Вами устройства и - можно уже измерять? Можно, но лучше - не нужно. Чего же еще не хватает? Несколько неочевидной вещи - осциллографа. Казалось бы - зачем? Вроде как собрались шум померить, а не посмотреть? Да, это так. Но...

Шумы в реальной студийной аппаратуре весьма малы, и составляют (в худших случаях!) доли милливольт. В силу их малости, даже самое незначительное присутствие других сигналов может сильнейшим образом повлиять на результаты измерений, исказив их "до полной неузнаваемости". Поэтому, чтобы точно знать, что измеряем мы уровень именно шумов, а не чего-то еще неизвестного, желательно (а скорее - необходимо) дополнительно осуществлять визуальный контроль исследуемого сигнала. (Кстати, это полезно всегда - дабы знать, что именно измеряется, а то - такого можно "намерять"!)

В сигнале - теоретически - всегда может присутствовать "много чего", например - фон, ультразвуковые наводки от цифровых цепей и т.д. и т.п. И чтобы не ошибиться - лучше этот сигнал еще и "посмотреть".

Подключать осциллограф нужно не к выходу исследуемого прибора, а к специальному выходу вольтметра. Практически в любом "нормальном" вольтметре есть специальное гнездо - "ВЫХОД". На него подается уже усиленный внутри вольтметра сигнал, и, подавая на осциллограф сигнал именно отсюда, Вы "убиваете двух зайцев".

Так как уровень исходного напряжения шумов очень мал - то, подав его на осциллограф напрямую, можно - скорее всего - вообще ничего не увидеть, т.к. чувствительность большинства осциллографов недостаточна для анализа слабых сигналов. Кроме этого, если Вы подключите осциллограф ко входу вольтметра - то сам осциллограф, вполне вероятно, сможет навести помехи на входные цепи вольтметра, и тогда - прощай, объективность измерений!

Ну - теперь, когда мы подключили к выходу исследуемого устройства вольтметр, а к его выходу - осциллограф, мы готовы к проведению измерений? Почти, но не совсем. (Не спешите!)

Дело в том, что современные "устройства обработки звуковых сигналов" (в широком смысле) - собраны, как правило, на весьма скоростных, высокочастотных элементах - транзисторах и микросхемах. Спектр их шумов может простираться очень далеко за пределы звукового диапазона, а так как вольтметр меряет "все", то его показания могут вследствие этого существенно отличаться от воспринимаемых "на слух", в звуковом диапазоне, величин. Как быть?

Да очень просто - включить в цепь измерительный фильтр, ограничивающий полосу частот, подаваемых на вольтметр, сигналами звукового диапазона, от 20Гц до 20кГц.

В некоторых моделях лабораторных вольтметров такие фильтры уже встроены в конструкцию прибора, а если у Вас такого фильтра нет - не беда, его несложно сделать и самому. Запомните - этот фильтр должен ограничивать ТОЛЬКО полосу частот, подаваемых на детектор (выпрямитель) вольтметра! И ничего более!

Вот теперь, имея все необходимое - вольтметр, фильтр звукового диапазона, осциллограф - можно смело приступать к измерениям.

Рассмотрим для начала параметр, вызывающий наибольшие затруднения - входной шум микрофонного усилителя. Если у Вас в описании пульта указано, что эта величина составляет, к примеру, -130дБ, то означает ли это, что отношение сигнал/шум будет составлять такую же точно величину? Нет, конечно.

В профессиональной аппаратуре вообще не очень часто указывается соотношение сигнал/шум, т.к. эта величина - неконкретна, и зависит от условий реальной работы. Это можно пояснить следующим примером: представьте, что некоторое устройство имеет выходной шум в 1 милливольт. Каково будет отношение сигнал/шум? Вы скажете - это будет зависеть от величины полезного сигнала!

Правильно. Если сигнал будет 1 вольт, то отношение сигнал/шум=60дБ, а если 10 вольт, то отношение сигнал/шум=80дБ.

Так и в случае с пультом - можно снимать выходной сигнал величиной 10 вольт, а можно - 250 милливольт. Естественно, что отношение сигнал/шум будет в этих случаях различно. Вот как раз чтобы избежать возможных разночтений, и указывается не отношение сигнал/шум а ФИЗИЧЕСКАЯ, "абсолютная" величина выходных шумов, только выраженная не в вольтах, а - для удобства ее использования на практике - в децибелах.

Посмотрите на спецификацию своего пульта - там вы увидите множество значений уровней шумов для многих случаев - когда мастер-фэйдер закрыт, открыт, одна ячейка открыта или несколько, и т.д. и т.п. Все это - именно реальные физические величины, а не отношение сигнал/шум!

Однако - вернемся к микрофонному входу. В описании указано: "EIN=-130dB". Как это понимать и измерять? "EIN" - это Equivalent Input Noise ("Эквивалентный Входной Шум"), то есть уровень шума устройства, приведенный ко входу. Для его измерения достаточно узнать коэффициент усиления и величину шумов на выходе устройства, а затем - вторую величину разделить на первую, и результат - выразить в децибелах.

Пример. Для измерения EIN необходимо сделать следующее: подключить(обязательно!) на вход вместо микрофона его эквивалент (постоянный резистор, номиналом 150 или 200 Ом - его величина обычно указывается в документации. Чаще всего - 150 Ом.), и установить регулятор GAIN на максимум. Измерить выходное напряжение шумов. Затем - отключить наш эквивалент микрофона, и подать на вход небольшой сигнал - к примеру, 1мВ. Измерить величину выходного сигнала. Разделив ее на величину входного, получим коэффициент усиления устройства. Допустим, вход - 1мВ, выход - 1В. 1В/1мВ=1000 раз, или 60дБ.

Если при измерении шума ранее было получено, к примеру, 0,25мВ (-70дБ), то для нашего устройства EIN=(-70дБ)-(60дБ)=-130дБ.

Казалось бы, для чего такая "громоздкая" и "малопонятная"(на первый взгляд) величина? А вот и нет, очень даже удобная! Вы получили РЕАЛЬНУЮ величину шумов на входе Вашего устройства. И теперь, при необходимости, очень легко узнать величину отношения сигнал/шум для любого сигнала. Для этого достаточно из полученной величины EIN вычесть уровень подаваемого на вход сигнала - и готово!

Пример. Допустим, Вы подаете на вход сигнал величиной 0,775мВ (-60дБ).

Сигнал/шум=EIN(дБ)-Uвх(дБ)=(-130дБ)-(-60дБ)=-70дБ. Все! Для данного входного сигнала, с этим предусилителем, отношения сигнал/шум большего, чем -70дБ, не получить. Хоть стреляйся!

Здесь необходимо сделать одно замечание. Дело в том, что нешумящих источников - не бывает! Шумит все, в том числе и резисторы. Тепловые шумы резистора номиналом 150 Ом составляют величину 0,22мкВ(или -131дБ). Плюс собственные шумы входного каскада... Поэтому, если у Вас вдруг получится, к примеру, -135дБ, то - проверьте приборы и все, что можно. Аналогично - некоторые, не совсем добросовестные фирмы указывают EIN=-134 дБ. НЕ бывает! (Если, конечно, после букв "дБ" не стоит буква "А").

Так мы постепенно подошли к применению так называемого "псофометрического фильтра"

Ох! Мало было осциллографа и одного фильтра! Новая напасть! Да, дай только этим инженерам волю... Что же это такое и для чего нужно? А вот для чего.

Как известно, чувствительность слуха к разным частотам - неодинакова, и поэтому два шума с одинаковой "приборной" величиной, измеренной в широкой полосе, могут "на слух" восприниматься совершенно по-разному. Чтобы учесть особенности именно слухового восприятия, в цепь измерения, кроме уже описанных устройств, дополнительно включается специальный фильтр, чья АЧХ соответствует чувствительности нашего уха к слабым сигналам. (В последнее время этот фильтр часто называют "взвешивающим".)

Существует множество таких фильтров, с АЧХ соответствующими свойствам слуха при различных громкостях - A,B,C,D. Но реально, для измерения шума, применяется только один - "А". Если измерения проводились с использованием этого фильтра, то в результате пишется не просто "дБ", но - "дБА", т.е. наличие обозначения "дБА" означает, что в результаты измерений внесена поправка, учитывающая особенности слухового восприятия. Эти данные более точно соответствуют тому, что мы слышим.

Различие между "просто дБ" и "дБА" зависит от спектра шума, и в общем случае - непредсказуемо, однако значение в "дБА" всегда меньше. Например, если у Вас напряжение шумов, измеренное в широкой полосе будет -80дБ, то при измерении с фильтром "А" это значение может быть и -85дБА.

В настоящее время существуют и еще некоторые другие виды АЧХ "взвешивающих" фильтров, а также методики измерения с использованием других вольтметров (пиковых), однако они пока не получили столь широкого распространения, как описанный выше, и поэтому здесь не рассматриваются.

Измерение шумов остальных устройств принципиальных отличий от описанного выше не имеет, и, как правило, особых затруднений не вызывает. Да и чаще всего это гораздо проще - например, для усилителей (и многого другого) вовсе не надо результаты никуда пересчитывать, "приводить ко входу" и т.д.

Только надо не забывать о подключении ко входу испытуемого устройства эквивалента источника сигнала, так как на "висящий в воздухе" вход может навестись все, что угодно. Замыкать же вход "на землю" не следует - это и методологически неверно, да и в силу возможных особенностей разводки "земляных" проводников в конкретном устройстве в этом случае вполне возможно возрастание уровня шумов, да и фона - тоже. (В практике автора, во всяком случае, такое бывало неоднократно.)

И не забывайте об обязательном контроле измеряемых величин визуально, по осциллографу!

ИЗМЕРЕНИЕ ИСКАЖЕНИЙ

В аппаратуре возникает множество различных видов искажений, однако наибольшее распространение получила оценка одного их вида - гармонических искажений, или попросту - коэффициента гармоник Кг. (Ранее, а иногда еще и сейчас, называемого коэффициентом нелинейных искажений. Синонимы - "клир-фактор", или просто - "клир").

Долгие годы этот показатель считался вполне достаточным для оценки качества аппаратуры, и во многом это верно и сейчас. Конечно, существует много и других параметров, характеризующих нелинейность систем - таких, как интермодуляционные искажения(IMD), переходные интермодуляционные искажения (TIMD) и другие, а также способов их измерений. Однако все они достаточно сложны в аппаратурной реализации, и в силу этого не имеют широкого распространения в повседневной практике.

Для измерения этих величин необходим прежде всего высококачественный узкополосный анализатор спектра, с большим динамическим диапазоном. (Нельзя сказать, что этот, весьма дорогостоящий, прибор имеется в каждом доме...) Плюс несколько (два-три) специальных генератора, крайне редко встречающихся. Уже надоело? Но и это ведь еще не все! Еще - масса трудоемких и кропотливых измерений... Да плюс потом - расчеты... Нет, наверное, лучше не надо! Очень уж сложно и мудрено...

А - чем лучше Кг? Да тем, что проще! Хотя на самом деле - его измерение не имеет очень уж больших отличий от вышеописанных, но... Благодаря некоторым, вполне допустимым упрощениям, стало возможным создать приборы для автоматического измерения Кг, и вследствие этого процедура измерений доступна практически всем.

Отечественная промышленность выпускала много приборов для этих целей, от совсем ручных до полных автоматов, с цифровым измерением (Не ищите, вымерли! Как мамонты... И, кстати, по аналогичным причинам.) Но - не будем морочить голову, и вспомним об одном из самых доступных - С6-11. Это, конечно, не совсем полный автомат, но - вполне достаточно для практических целей.

"Да падет позор на мои седины!..." (Старик Хоттабыч, кажется...) Самое главное забыли! Что это вообще такое, Кг? Что, собственно, измерять собираемся-то?

В силу неидеальности элементов тракта, в выходном сигнале ЛЮБОГО устройства появляются какие-то элементы, которые отсутствовали во входном. Именно эти лишние составляющие и являются собственно искажениями. (Если Вам начнут нести всякую ахинею про фазовые искажения, про частотные искажения - НЕ ВЕРЬТЕ! Это все - околонаучные спекуляции, рассчитанные на неграмотных простачков. Строго говоря, искажениями может быть названо только то, что в дальнейшем не может быть исправлено НИЧЕМ. Изменения в сигнале, вызванные неравномерностью АЧХ устройства (или его ФЧХ), могут быть устранены с помощью эквалайзера или фазовращателя, а вот появившиеся новые составляющие - не убрать ничем. Уж коли перегруженный до ограничения усилитель обрезал верхушки синусоид входного сигнала - то попрощайтесь с ними навсегда! Что упало - то пропало.)

Однако - хватит "лирических отступлений". Вернемся к теме. Что же такое Кг? Кг - это отношение суммы ВСЕХ гармоник сигнала к уровню его основного тона. При определении коэффициента гармоник учитываются только те новые составляющие в выходном сигнале, частота которых в целое число раз выше частоты входного сигнала. Эти составляющие являются гармониками входного сигнала (для 1кГц : 2кГц - это вторая гармоника, 3кГц - третья, 4кГц - четвертая, и так далее...), поэтому и называется именно так - коэффициент гармоник. Понятно, что при подаче на вход широкополосного сигнала спектр возникающих гармоник будет также очень широк, и не определить будет, где - "вершки", а где - "корешки". Как быть?

Вы скажете : надо подать на вход всего один сигнал, тогда и разобраться будет проще. Правильно! Для этих целей подойдет любой звуковой генератор, у которого Кг заведомо намного меньше, чем у исследуемого устройства. Наверное, лучший отечественный генератор для этих целей - Г3-118, его собственный Кг=0,002%, что вполне достаточно для большинства практических применений.

Сама процедура измерений очень проста - достаточно на вход испытуемого устройства подать сигнал от генератора, а на выход подключить ИНИ (Измеритель Нелинейных Искажений, в обиходе - часто просто "Инишник") - и готово, ИНИ сам покажет Кг. Проще, кажется, некуда. Да, но... Опять забыли осциллограф!

На всех, без исключения, ИНИ обязательно есть гнездо выход. Для чего? Как и раньше - чтобы "видеть, что меряем". Дело в том, что в силу упомянутых ранее упрощений ИНИ меряет не только гармоники, но - ВСЁ, что есть в выходном сигнале, кроме - естественно - сигнала основной частоты. Таким образом, на результатах измерений могут сказаться любые помехи, имеющиеся в сигнале - фон, шум, и т.д. и т.п. (Если кто-то думает, что "у них" по другому - увы, заблуждение!

В описаниях почти везде пишется "THD+Noise", это и есть результат измерения обычным ИНИ, который - реально - измеряет отношение амплитуды сигнала основной частоты ко всему остальному). Связано это с самим принципом его работы - ИНИ с помощью имеющегося в нем фильтра полностью подавляет сигнал основной частоты, и меряет все то, что осталось после фильтрации. На его выходное гнездо как раз и подается все то, что осталось, то есть - продукты искажений.

Казалось бы - плохо, неудобно? Ан, нет! Благодаря именно такому построению ИНИ, мы и имеем означенное гнездо - "выход", подключив к которому осциллограф можно посмотреть - а что наш испытуемый "внес" в сигнал своего? какую именно "гадость" добавил?

Ну вот, новая напасть! Это-то зачем? Измерил Кг - и дело с концом! Да, в принципе - так. Но - надо же знать, что именно измерил наш ИНИ. А что, если вдруг возник фон, и ИНИ именно его принял за гармоники? Или шумы? Ведь слуховой контроль при этих измерениях, как правило, отсутствует. Вот осциллограф нам и покажет, что мы измеряли. Кстати - шумов, как правило, можно не бояться. Ведь никто, наверное, не купит усилитель с отношением сигнал/шум в 80дБ? А уровень помех в -80дБ соответствует Кг=0,01%. (Почему? Да потому, что 1% - это одна сотая часть, или -40дБ. 0,1% - это -60дБ, 0,01% - это -80дБ. Кстати, иногда Кг именно так и указывается, в децибелах. Не смущайтесь, встретив такую запись - это то же самое, только иначе записанное.) А что еще полезного можно узнать, рассматривая выходной сигнал ИНИ?

Оказывается, многое. Не секрет, что ламповая и транзисторная, микросхемная аппаратура звучат во многом по-разному, при прочих равных условиях. Это в значительной степени объясняется именно различным спектром гармоник.

В то время, как в лампах создаваемые ими гармоники имеют сравнительно большую величину, но узкий спектр - как правило, 2-я и 3-я гармоники, а остальные пренебрежимо малы, в транзисторах - наоборот. Спектр их гармоник может быть очень широк - до 20-й и даже более, и хотя все они имеют малую величину - слышимость их гораздо больше. Суммарный же Кг вполне может и там и там быть одинаков - сумма "немногих, но больших" в одном случае, и "многих, но малых" - в другом.

Выходной сигнал ИНИ, поданный на осциллограф, как раз и поможет Вам оценить спектр гармоник. Если на экране картинка, более-менее похожая на синусоиду - значит, спектр гармоник достаточно узкий, и скорее всего Ваш аппарат будет звучать достаточно чисто. Если же картинка имеет множество изломов, острых углов, и больше напоминает старую, ржавую пилу - то спектр гармоник очень широк, и скорее всего - хорошего звука ждать не приходится.

Кстати - часто приходится сталкиваться с неизвестно откуда взявшимся мнением - якобы измерение Кг на высоких частотах не имеет смысла, т.к. гармоники, мол, все равно за пределами звукового диапазона, и поэтому на качество звука не влияют. Глубочайшее заблуждение! Да, гармоники - за диапазоном слышимости. Да, на качество звука синуса не влияют. Но... Видел ли кто хоть раз в жизни человека, который накупил бы кучу дорогостоящей аппаратуры, дабы наслаждаться восхитительным звучанием сигнал-генератора? Вот то-то и оно, слушаем ведь не синус!

А коль не синус - то приходится считаться с объективной реальностью того факта, что сигнал-то ШИРОКОПОЛОСНЫЙ! А, значит, и спектр гармоник реального сигнала - тоже не линейчатый, а широкополосный. А поэтому - там, где гармоники синуса чувствовали себя привольно, далеко отстояли друг от друга и "не мешали" друг другу, не взаимодействовали, гармоники настоящего звукового сигнала будут взаимодействовать, находясь в "тесноте и обиде", будут "биться" друг об друга. Это приводит к премерзкому результату - появлению комбинационных частот, суммарных и разностных, биений. А уж как они портят звук - никаким гармоникам и не приснится!

Поэтому, если хотите полностью оценить исследуемый прибор - то необходимо измерить Кг во всем звуковом диапазоне. Ну или хотя бы в нескольких точках - на краях диапазона и в его середине. Однако подробное описание методик измерения "всего и вся" - к сожалению, выходит далеко за разумные пределы того, что может разместиться на этом сайте. Увы!...

В большинстве моделей ИНИ имеются различные дополнительные устройства, помогающие в работе. В упомянутом ранее С6-11, к примеру, есть возможность производить измерения как в вольтах и процентах, так и в децибелах - как Вам больше нравится. Есть также и очень полезная функция - встроенный обрезной фильтр, подавляющий все частоты, лежащие ниже 1кГц. Зачем? Если Вам придется измерять Кг мощных усилителей, то вполне возможна такая ситуация : с увеличением выходной мощности усилителя будет расти и уровень фона. Да-да, не удивляйтесь!

Во многих моделях усилителей емкость фильтрующих конденсаторов невелика, и при росте мощности питание "проседает", увеличиваются пульсации питающего напряжения, что неизбежно сопровождается ростом сетевого фона.

Естественно, это происходит только при работе усилителя на нагрузку, Вы не забыли ее подключить? Измерять параметры усилителей мощности без нагрузки, на холостом ходу - бессмысленно. Все усилители покажут ТАКИЕ параметры по Кг, что хоть на Золотую медаль выдвигай! (Конечно, это не относится к измерению шумов, там наличие или отсутствие нагрузки принципиальной роли не играет.) Включив этот фильтр, Вы сможете убрать фон из измерений и получить более достоверные результаты.

 


--------------------------------------------------------------------------------


Микшерский пульт. 
 

В настоящее время существует огромное количество самого разнообразного звукового оборудования - различные процессоры, компрессоры, эквалайзеры и т.д. и т.п. В зависимости от финансовых возможностей и предназначения список имеющегося в конкретной студии оборудования может быть любым, однако во всех без исключения студиях есть, в обязательном порядке, как минимум одно общее - микшерный пульт.

При этом совершенно неважно, каков он - дорогущий “железный”, или - вообще “виртуальный”, в компьютере. Главное - что он есть. Без микшерного пульта не обойтись - ни в студии, ни на концертной площадке, ни в театре - нигде.

Во многом микшерный пульт похож на озеро Байкал, да простит “Гринпис” такое сравнение! В него, как и в Байкал, стекается множество “рек” и “ручейков” - звуковых сигналов - от микрофонов, электронных музыкальных инструментов, ревербераторов, и так далее - а вытекает всего одна “река” - суммарный звуковой сигнал.

Поступающие в пульт звуковые сигналы усиливаются, ослабляются, обрабатываются различными эквалайзерами, компрессорами и прочим (сахар и соль - по вкусу!), смешиваются - и пожалуйста, готово! М-да... То - озеро, то - кухня. Так и спятить не долго! Но - не нами это придумано.

Одно из английских названий микшерного пульта - Mixing Board, что как раз и означает “смешивательная доска”. Это название родилось давно, на заре развития и становления радиоэлектроники, когда в пультах еще не было всех современных прелестей - ни тебе

эквалайзеров, ни подгрупп, ни даже малейшей автоматизации - ничего! Тоска, одним словом... Зато современный микшерный пульт - это частенько настолько сложное устройство, что в нем не всегда сразу сможет разобраться даже самый искушенный профессионал.

Пультов существует великое множество - концертных, студийных, театральных и т.д. и т.п. Однако, несмотря на великое их разнообразие, в конструкциях всех пультов есть немало общих черт. Любой пульт содержит, как минимум, входные ячейки и мастер - секцию. Но этого далеко не всегда достаточно, особенно при работе с большим числом источников сигналов. Поэтому, по мере усложнения условий работы, и были изобретены многие дополнительные устройства - такие, как подгруппы, “ауксы” (AUX), разрывы (INSERT), для многоканальной записи - особые ячейки (IN-LINE), и еще многое другое.

 

Входная ячейка

На входные ячейки, как следует из самого названия, поступают входные сигналы - от микрофонов и других источников. Здесь осуществляется предварительное усиление сигналов, их обработка - частотная, динамическая, а также некоторые другие виды, и распределение на дальнейшие устройства. В самом общем виде примерная структура входной ячейки изображена на рис.2.

 

 

1.Входная секция.
2.Блок обработки.
3.Блок распределения сигналов.

Сигнал от источника подается на входную секцию, где осуществляется выбор сигнала, его нормирование - приведение к уровню, необходимому для нормального функционирования дальнейших цепей, и предварительная фильтрация.

Входная секция, как правило, имеет следующие элементы: переключатель входов MIC/LINE, регулятор(-ы) усиления GAIN, фазовращатель PHASE (иногда - просто значок), и фильтр(-ы). Иногда встречается кнопка PAD для ступенчатого ослабления входного сигнала микрофонного входа - обычно на 20 или 30дБ. Регулировка уровня сигнала осуществляется ручкой GAIN входного усилителя, причем термин усилитель - несколько условен, так как здесь может осуществляться как усиление, так и ослабление сигналов.

В профессиональной аппаратуре, как правило, имеется два отдельных входа - симметричный MIC для микрофона и линейный LIN - для сигналов с высокими уровнями.

Линейный вход - чаще всего несимметричный, однако в совсем уж серьезной технике - бывает и симметричным.

Здесь необходимо сделать одно замечание. В сравнительно дешевой аппаратуре иногда вдруг можно увидеть, прямо скажем - неожиданно, симметричный линейный вход. Про бесплатный сыр - помните? Так и здесь, неплохо будет поинтересоваться - а с чего это вдруг подобная щедрость? Если кто-то верит в альтруизм производителя - забудьте! Все гораздо проще - и хуже.

Это чисто рекламный трюк, не более того. Хотя вход - действительно симметричный, сие - правда. Но - не вся... Просто сигнал с этого входа сначала ослабляется, иногда - довольно сильно, в несколько десятков раз, а затем подается на вход ..... да, Вы правильно угадали - микрофонного усилителя! Задача из одного действия - улучшится ли звук после такого преобразования? Решайте сами...

Хорошим показателем этой уловки может быть наличие всего одной ручки регулятора входной чувствительности - вместо двух, раздельных, а также отсутствие кнопки выбора входа.

После предварительного усиления в цепи сигнала могут стоять два не совсем очевидных устройства - фазовращатель и фильтр(-ы). Строго говоря, первое точнее называть фазо-инвертором, так как ничего в нем не “вращается”, а просто инвертируется фаза сигнала на 180 градусов, но - видимо, “так красивше”. Он необходим для фазировки микрофонов, а иногда и для других целей. Затем сигнал может быть подан на фильтры для ограничения его полосы и устранения нежелательных составляющих. В дорогих (увы!) профессиональных пультах иногда можно встретить полный их набор, как для обрезки НЧ (LO-CUT), так и для обрезки ВЧ (HI-CUT), да еще и с перестраиваемыми частотами среза! Но чаще всего, увы, применяется простейший “однокнопочный” фильтр, обрезающий, как правило, только НЧ составляющие ниже 80 или 100 Гц. Иногда этот фильтр называют “фильтр шаговых помех”, т.к. он служит преимущественно для снижения “топота” от шагов, передающихся от несущих конструкций сцены на микрофон через его стойку.

Далее - сигнал после входной секции подается на блок обработки. Этот блок включает в себя различные цепи регулирования тембра (эквалайзер), а также разрывы (INSERT) для включения в тракт сигнала внешних устройств - компрессоров, фленджеров, и т.д.

Эти гнезда, как правило, парные. Одно гнездо - “Send” (“посыл”, “выход”) служит для подачи сигнала на внешнее устройство, другое - “Return” ( “возврат”, “вход”) для возврата обработанного сигнала в ячейку. В некоторых моделях недорогих пультов встречаются и совмещенные гнезда, на “стерео - джеках”. Это экономит место на задней панели пульта, но гораздо менее удобно. Кстати - в хороших пультах гнезда INSERT в обязательном порядке имеются во всех его секциях - и в ячейках, и в подгруппах, и в мастер - секции.

Конечно, строго говоря, эти гнезда (“разрывы” - INSERT) - не входят ни в какие блоки, т.к. “физически” - находятся между различными узлами ячейки, но целесообразно при рассмотрении структуры пульта рассмотреть их назначение именно здесь, исходя из их функциональной роли. В дорогих профессиональных пультах гнезд INSERT обычно два - одно перед эквалайзером, и одно - после. Для чего два? Ну, во-первых, больше - это не меньше. (Шутка!) А во-вторых, многие устройства обработки по разному “ведут себя”, будучи включенными в “чистый сигнал”, или в уже “оттемброванный”. Соответственно, разными будут и получаемые результаты.

Например, известно свойство сильной компрессии как бы “съедать” тембры. То есть, если сильно “накрутить” тембр сигнала, а затем подать его на компрессор - то все Ваши “накрутки” могут “пасть смертью храбрых”. Чтобы этого не произошло, целесообразнее включать компрессор до эквалайзера. С этих же гнезд можно снимать индивидуальные сигналы каналов для подачи на - к примеру - второй пульт (мониторный, видео, и др.), чтобы там можно было осуществлять независимую регулировку тембра.

Гнезда INSERT, стоящие после эквалайзера, целесообразно использовать, к примеру, для подключения устройств с ограниченным динамическим диапазоном - фленджера и др., чтобы не “рулить” эквалайзером вместе с полезным сигналом еще и шумы обработки. Во многих случаях также бывает полезно подать на включенную в разрыв обработку уже откорректированный эквалайзером сигнал - например, на шумоподавитель, на эксайтер, и т.д. и т.п. Разумеется, все вышеизложенное - “не есть” истина в последней инстанции. Автор - не Господь Бог, и даже не Билл Гейтс (по известному анекдоту...). Эти случаи приведены лишь как примеры, для демонстрации необходимости иметь две точки разрывов в каждой ячейке. Однако в большинстве недорогих пультов INSERT - увы! - всего один, после эквалайзера! Помните об этом при его использовании.

Эквалайзеры, стоящие в ячейках, отличаются большим разнообразием - от простейших НЧ и ВЧ, с регулировкой типа “shelf”, и до сложнейших полностью параметрических четырехполосных. Последние, как правило, на крайних НЧ и ВЧ регуляторах имеют возможность переключения характеристики регулирования “bell/shelf”. В параметрическом эквалайзере для каждой полосы осуществляется независимая установка всех параметров (отсюда и название - “параметрический”): центральной частоты регулирования fо, ширины полосы регулирования и величины подъема/завала АЧХ, а в эквалайзерах типа “shelf” - можно регулировать только величину подъема/завала АЧХ на краях диапазона, остальные параметры определяются его схемотехникой, и их изменение звукорежиссером - невозможно. Название - соответствует виду АЧХ. Для регулятора типа “bell” (от английского слова BELL - “колокол”) АЧХ имеет действительно “колоколообразную” форму, с максимальной глубиной регулирования на основной частоте его настройки, и плавно уменьшающейся по мере удаления от нее. Регулятор же типа “shelf” (от английского слова SHELF - “полка”) не имеет явно выраженной частоты настройки, его АЧХ имеет максимальную глубину регулирования на краях звукового диапазона, и плавно уменьшается к его середине. Иногда, правда, в (а что поделаешь? Опять же!) дорогих пультах встречается возможность регулировать частоту и для регулятора “shelf”, но это - совсем другая регулировка : изменяется частота, ВЫШЕ которой для НЧ-регулятора, (или НИЖЕ - для ВЧ-регулятора), характеристика становится плавно спадающей. Ниже этой частоты - в первом случае, и выше ее - во втором, все частоты поднимаются или ослабляются одинаково.

Итак, сигнал усилился, подкорректировался - и направился в блок распределения. Именно эта часть ячейки отличается максимальным разнообразием конструкций, и часто вызывает наибольшие затруднения, хотя по конструкции - это самая простая часть, “набор кнопок и ручек”. Кнопками Вы выбираете, куда сигнал будет направлен дальше, а ручками (если они есть) - устанавливаете уровень этого сигнала.

Эта часть в литературе и иногда на самих пультах называется “Routing”. Сигналы, поступающие с ячеек на последующие цепи, снимаются с двух точек схемы : часть сигналов снимается до фэйдера ячейки (PRE - Fader), а часть - после него (POST - Fader).

Как правило, все сигналы, которые далее идут в главный микс и на обработки - снимаются после фэйдера, причем те сигналы, которые идут в главный микс и подгруппы - снимаются после панорамного регулятора. Сигналы же, снимаемые ДО фейдера - это, как правило, только те, которые поступают на мониторы - сценические или студийные.

Почему именно так? Да очень просто - чтобы баланс мониторов не зависел никоим образом от возможного изменения баланса в зале или в главном миксе! Однажды Вы его выстроили - и больше не думаете, занимаетесь своим главным делом.

В самом общем виде, для распределения сигналов служат следующие органы управления : панорамный регулятор “PAN”, кнопки подачи - на главный выход (“MIX”), на подгруппы (“SUB”, или “GROUP”), на многоканальный магнитофон - “ODD” и “EVEN”, (“Четные” и “нечетные”), как правило - с номерами от “1” до “24”. Кстати, при этом и на панарамном регуляторе - тоже, бывают надписи не “L” и “R”, а “ODD” и “EVEN”. Правда, это, как правило, только на пультах “In-Line”, но о них - позже. Суть дела от этого, однако, не меняется.

В конструкции этого регулятора есть одна тонкость, о которой часто забывают. Дело в том, что существуют два способа панорамирования - с постоянным напряжением и с постоянной мощностью. При первом способе - сигнал в среднем положении регулятора PAN ослабляется на 6дБ. Это очень хорошо для звукозаписи, с точки зрения моно-совместимости, но при “живом” звукоусилении - возникают проблемы, т.к. сигнал в центре “провален” по мощности на 3дБ. При втором способе - сигнал в среднем положении регулятора PAN ослабляется на 3дБ. Для звукоусиления - замечательно, никаких провалов в центре, но при попытке записывать на таком пульте - проблемы с моно-совместимостью, т.к. при этом сигналы в центре (в режиме "МОНО") возрастают по уровню на 3дБ. В качестве полумеры на некоторых пультах применяется “среднее арифметическое” - ослабление сигнала в центре на 4,5дБ.

Еще один узел, который конструктивно и по расположению также входит в эту часть ячейки - это узел контроля и прослушивания. (Кнопки PFL, AFL, CUE, SIP, SOLO.) С помощью этих кнопок Вы выбираете, каким образом будет осуществляться контроль сигнала в данной точке пульта. Кстати, это относится ко всему пульту, а не только ко входной ячейке. С этими кнопками частенько случается путаница, т.к. они все выполняют схожие, но несколько различные функции.

PFL - это “Pre fader listen”, при нажатии этой кнопки сигнал для контроля берется до регулятора громкости. Это делает возможным предварительный контроль сигнала в еше “закрытой” ячейке, до того, как подавать его далее на последующие цепи пульта. При этом, как правило, на соответствующих индикаторах мастер-секции индицируется уровень сигнала в данной точке, что позволяет точно его отрегулировать - для избежания перегрузок.

AFL - это “After fader listen”, прослушивание после фэйдера. При нажатии этой кнопки сигнал для контроля берется после регулятора громкости, что позволяет проконтролировать реальный уровень сигнала в данном месте тракта.

SIP - это “SOLO - IN - PLACE”, дословно - “соло - на - месте”. При использовании этой кнопки сигнал для контроля снимается после регулятора громкости и после панорамного регулятора, что позволяет прослушать сигнал не только с учетом его уровня, но и проконтролировать его положение в стереопанораме.

Назначение других кнопок прослушивания (CUE, SOLO и некоторых других, редко встречающихся названий) - не стандартизовано, и различные фирмы - изготовители могут применять их для выполнения самых разных функций - как PFL, так и AFL, SIP и др.

Иногда - для удобства работы и экономии места - вместо многих различных кнопок ставится всего одна, тогда это чаще всего бывает кнопка CUE или SOLO, и выполняемая ей в данный момент функция (PFL, AFL, SIP и др.) выбирается переключателем режимов контроля в мастер-секции.

В дешевых пультах - чаще всего, независимо от названия кнопки, применяется только режим PFL.

Еще один интересный орган управления - кнопка MUTE. По своим функциям она сходна с кнопкой включения ячейки ON, только работает как бы “наоборот” - при ее нажатии сигнал ячейки отключается. Иногда, впрочем, эта кнопка - с надписью MUTE - на самом деле и является кнопкой включения ячейки, только стоящей “вверх тормашками”. В некоторых пультах при активизации MUTE отключается весь сигнал ячейки, а в некоторых - только та его часть, которая поступает на последующие цепи после фэйдера (POST FADER). Для чего это нужно? Да, и, собственно, зачем весь MUTE вообще?

Представьте себе, что озвучивается большой сборный концерт, с большим числом исполнителей. При этом число одновременно используемых микрофонов может быть различным, от “всех сразу” - до одного, для артиста разговорного жанра или ведущего. Незадействованные же микрофоны в это время лучше отключить, чтобы не ловить всякие посторонние звуки, или просто, чтобы не шипели. Делать это вручную, по одному - долго и неудобно. Гораздо лучше иметь возможность заранее запрограммировать, какие микрофоны в каком номере не задействованы - и заглушать их все сразу, нажатием одной кнопки. Мониторные же линии, идущие PRE FADER, остаются функционирующими. Особого шума в зале - они, как правило, не добавляют. Возможны, конечно, и другие применения MUTE. Но это уже - на Ваше усмотрение. Часто функция MUTE имеет MIDI-автоматизацию, об этом - чуть далее.

Для отправки сигнала на дополнительные устройства обработки (общие для всех сигналов в пульте) служат регуляторы “AUX” - для индивидуального регулирования уровней сигналов, посылаемых на устройства эффектов (например, на ревербератор), и кнопки “PRE/POST”, позволяющие выбирать - откуда будет направлен сигнал, до или после фэйдера.

Здесь необходимо сделать маленькое отступление. Дело в том, что полное название этих сборных шин и соответствующих им выходов - “Auxiliary Sends” (“Дополнительные посылы”). Со временем это название “располовинилось” и укоротилось, и теперь можно встретить названия как “AUX”, так и “Sends”, хотя первое встречается много чаще. В отечественной литературе более распространенным является русское название “посылы”, а для самих регуляторов - “отборы на посылы”.

В основном - это все, что можно сказать о входных ячейках. Ах, да! Где же обещанные “In-Line”? Теперь дошла очередь и до этого.

Пульты этой структуры предназначены для звукозаписи, и в силу этого менее известны в широких кругах. Как следует из самого названия (“In-Line”, дословно - “в линию”), сам процесс звукозаписи как - бы “вытянут в линию”. Ячейка такой структуры состоит из ДВУХ обычных ячеек, включенных последовательно, друг за другом. Сигнал, пришедший на первую ячейку (к примеру, микрофонный), обрабатывается в ней, и поступает на вход одного из каналов магнитофона для записи, а сигнал воспроизведенный магнитофоном (как правило, этого же канала) - поступает на вторую, где он обрабатывается в процессе сведения для получения финального микса. Таким образом - никаких проблем с коммутацией, ничего не надо переключать - все на своем месте, и процесс работы значительно ускоряется и облегчается.

Естественно, при этом в каждой “физической” ячейке - все в двух экземплярах. Два эквалайзера, два фэйдера, и т.д. и т.п. Правда, это - "в идеале".

Почему в идеале? Потому, что с целью удешевления многие фирмы делают часть узлов совмещенными. Например - один эквалайзер, переключаемый туда-сюда, или делящийся пополам - часть в одну половину ячейки, часть - в другую. Аналогично и с “AUX”-ами, и с некоторыми другими узлами. Только микрофонный вход всегда один...

Суммирующих стереошин тоже две, аналогичных “MIX” на обычном пульте. Чтобы их не путать, в пульте “In-Line” они носят другие названия - как правило, “A” и “B” на ячейках, а в мастер-секции затем можно выбрать, из каких именно сигналов будет состоять главный микс - “A”, “B” или из обоих.

Из-за больших возможностей - такие пульты и стоят гораздо дороже. Как правило, у них очень сложная структурная схема, поэтому нет особого смысла здесь вдаваться в тонкости. К тому же этих самых структурных схем - великое многообразие, и для каждого конкретного пульта нужен отдельный рассказ, по объему - существенно больший, чем можно разместить на журнальных страницах.

Итак - со входными ячейками вроде более - менее разобрались. Что дальше? А дальше начинается область наибольшего разнообразия в конструкциях пультов - подгруппы и мастер-секция.

Что же такое подгруппы и зачем они вообще? Казалось бы, звучание отдельных источников уже готово, со всеми тембрами и прочим. Чего же еще не хватает? Как ни странно - того, что к звуку прямого отношения не имеет. А именно - рук! Человек ведь не осьминог, к сожалению... (Наверно, многие звукорежиссеры с этим согласятся.)

Представьте - у вас большой коллектив, со многими инструментами. И в одном из мест песни - длинное, громкое соло (к примеру) ударных. Вам необходимо быстро увеличить громкость звучания ВСЕЙ ударной установки... а рук-то всего две!

Вот здесь и вступают в дело подгруппы. В них осуществляется промежуточное, до главного микса, суммирование нескольких сигналов. В описанном выше случае - можно все звуки ударных с индивидуальных ячеек подать сначала на одну подгруппу, а уже с нее - на главный мастер. И громкостью ВСЕХ инструментов ударной группы управлять ОДНОЙ ручкой! Удобно? Еще бы! ( Правда, для стерео-подгруппы придется использовать две подгрупповых ячейки. Но ведь все равно удобнее!)

Аналогично и при звукозаписи - можно собрать какую-либо группу инструментов в подгруппу, и подавать на запись их все вместе прямо с подгруппы, минуя главный мастер, который при этом высвобождается для других работ.

Устройство ячейки подгруппы - не имеет принципиальных отличий от обычной входной ячейки. Как правило, здесь те же эквалайзеры (только обычно попроще), регуляторы AUX, панорамные регуляторы, и т.д. Отсутствует только входная часть (полностью), да исключены кнопки посыла в подгруппы.

Хотя, конечно, здесь “возможны варианты”. Например, во многих недорогих пультах в подгруппах эквалайзеров нет вообще, бывают и подгруппы без AUX. Иногда - правда, нечасто - встречаются и стерео-подгруппы. В таких случая изредка можно увидеть и “хитрый” регулятор панорамы, на основе MS-преобразования, с двумя отдельными регулировками, одна - ширины стереобазы, и одна - направления. Но это - очень редко...

В последнее время в дорогих пультах - как правило, студийных, для звукозаписи, иногда встречаются и так называемые “виртуальные подгруппы”. Что же это такое?

Да ничего страшного, это не “виртуальная реальность”, а нечто вполне осязаемое. (Хотя сами подгруппы, в привычном виде, отсутствуют начисто!)

В индивидуальных ячейках таких пультов вместо переменных резисторов-фэйдеров уровень сигнала регулируется управляемыми усилителями - VCA. При этом сами фэйдеры вырабатывают только управляющий электрический сигнал для управления VCA. При этом становится возможным объединить VCA нескольких ячеек в одну группу ПО УПРАВЛЕНИЮ, и управляющим сигналом одного фэйдера - управлять усилением сразу нескольких ячеек! Одна из ячеек назначается ведущей - master, а остальные - ведомыми, slave. При этом, естественно, сохраняются и все индивидуальные регулировки, т.к. все управляющие сигналы, поступающие на VCA индивидуальной ячейки, просто складываются. Иногда такой способ еще называют “VCA GROUP”. Аналогично осуществляется и работа “виртуальной динамики”, но это уже - тема для другого разговора.

Так как в силу конструктивных особенностей - из-за отсутствия на подгруппах части узлов - на лицевых панелях ячеек остается свободное место, то его очень часто используют для размещения различных дополнительных узлов пульта. Так, например, на подгрупповых ячейках во многих пультах размещаются различного рода дополнительные входы - для возврата в пульт сигналов с внешних устройств эффектов AUX RETURN, и некоторые другие.

В этих случаях получается, как в ячейке In-line: в одной - две. При этом часто используются и аналогичные приемы построения - возможность переключения эквалайзеров, отборов на эффекты (AUX) и прочее. Вроде - о подгруппах, в основном, все.

Вот теперь мы дошли до самой, пожалуй, важной части пульта - мастер-секции. Почему самой важной? Да потому, что от ее построения зависит, насколько хорошо будет звучать весь пульт, и насколько удобной будет работа с ним. Именно в мастер-секции сосредоточено максимальное количество органов управления, применяются самые качественные радиоэлементы, имеется максимум индикации.

Казалось бы, основная функция мастер-секции - просто просуммировать все сигналы и “выдать” финальный стереомикс. В принципе, это верно. Но - не совсем. В любом пульте имеется много узлов, которые не относятся ни к одной его части “персонально”, а являются общими для всего пульта. Вот все эти узлы обычно и сосредоточены в мастер-секции.

Прежде всего - это, естественно, главный сумматор, мастер - фэйдер, разрывные гнезда MASTER INSERT и основной стереовыход с измерителем уровня. Эти элементы есть во всех без исключения пультах, в которых есть главный мастер. Еще один узел, также присутствующий практически во всех пультах - это AUX MASTER - место, где суммируются сигналы всех посылов на внешние эффекты AUX, с индивидуальными регуляторами выходного уровня для каждой линии AUX. Как правило, на этих выходах имеются кнопки прослушивания одного из видов, описанных ранее - PFL или AFL.

Также в любой мастер-секции есть блок контроля сигналов, от простейших, до весьма сложных. В простейшем случае - это кнопка выбора прослушиваемого источника (главный стереовыход или шина PFL), измеритель уровня и регулятор громкости контроля (наушников). В сложных пультах здесь, как правило, имеются гораздо более широкие возможности.

Во-первых, если в ячейках стоит одна многофункциональная кнопка - CUE или SOLO, то в мастере есть возможность переключения ее режимов - PFL, AFL, SIP и т.д. Во-вторых, должна быть предусмотрена возможность подачи контролируемого сигнала на внешнюю систему звукового контроля - как правило, с гнезд C.ROOM (контрольная комната). При этом обязательно, кроме плавного регулятора уровня, предусматривается и ступенчатое ослабление громкости контроля, обычно это кнопка DIMM. Вводимое ей ослабление - чаще всего 20 или 30 дБ. В третьих - помимо обычных кнопок контроля на самих ячейках или подгруппах - может быть предусмотрен отдельный блок, для выбора на контроль различных источников, которые в “явном” виде отсутствуют - например, стереопар возвратов со внешних эффектов, попарного прослушивания подгрупп в стерео режиме, контроля внешних записывающих устройств (магнитофонов), и др.

Кроме этого, в некоторых моделях дорогих пультов - для проверки “всего и вся” - имеется встроенный звуковой генератор. Он может быть как простейшим - на несколько фиксированных частот - так и достаточно серьезным, с плавной перестройкой частоты сигнала по всему звуковому диапазону. В простейших случаях сигнал генератора подается на свое выходное гнездо и/или на главный стереовыход - MASTER OUTPUT. В более “навороченных” пультах предусматривается возможность подачи сигнала с помощью внутренней коммутации в любую точку пульта.

Еще одна непременная часть серьезного пульта - переговорное устройство TALKBACK. Как правило, предусматривается возможность подключения к нему только одного микрофона (естественно, с регулировкой его громкости), и возможность выбора “точки назначения” - то есть, куда именно этот сигнал будет далее направлен. Это может быть главный выход, мониторные линии, и т.д. и т.п.

Очень часто в мастер-секции располагается и блок возврата сигналов со внешних эффект-процессоров AUX RETURN, или иногда - EFFECT RETURN, суть одна. Приходящие сигналы здесь регулируются по уровню, по панораме, иногда - и подвергаются частотной коррекции. В таких случаях предусматривается и наличие собственного эквалайзера - как правило, несложного.

В серьезных пультах для каждого отдельного входа AUX RETURN имеется свой индивидуальный тракт - с эквалайзером, панорамным регулятором, регулятором уровня и т.д. Иногда предусматривается и возможность “вторичного посыла” - с возврата одного эффекта на посыл другого, или даже на свой собственный посыл, например - для регулирования уровня FEEDBACK на ревербераторе, линии задержки, флэнджере и пр. В небольших пультах, для удобства и экономии места, часто входы возврата эффектов делаются стереофоническими, с общими эквалайзерами (и всем прочим) для обоих каналов.

Кроме описанных выше основных функциональных узлов собственно пульта, обычно в мастер-секции сосредоточены общие для всего пульта органы управления, а иногда - и коммутации. (Здесь имеется в виду получающая в последнее время все большее распространения матрица микширования - MIX MATRIX.) В число общих органов управления входят, например, такие устройства, как управление отключением ячеек MUTE и его автоматизация, переключение режимов работы ячеек студийных пультов IN-LINE на запись или воспроизведение, и др. Как правило, последнее в хороших пультах должно иметь возможность осуществляться централизованно, для многих - или даже всех - ячеек сразу, чтобы не возиться с десятками кнопок на куче ячеек поочередно.

Управление же функциями MUTE может осуществляться двояко. Один способ заключается в том, что на самом пульте можно запрограммировать несколько различных сочетаний (“сцен”) активизации этих отключений (“затыкания” ячеек). Затем - мгновенно, нажатием одной кнопки, вызывать нужную сцену. Этот способ часто применяется в недорогих пультах, при этом число запоминаемых сцен относительно невелико. Второй способ заключается в использовании внешних MIDI-устройств для записи и последующего воспроизведения нужных сцен. Естественно, что при этом число сцен не ограничено, но этот способ существенно дороже, и применяется только в дорогих, серьезных пультах.

Как правило, MIDI-автоматизация мьютов “не ходит в одиночку”, а обычно применяется в тех пультах, где имеется возможность автоматизации и других функций - например, автоматизации сведения. Последняя осуществляется либо с помощью моторизованных фэйдеров, либо путем применения VCA. Но это - уже тема для совсем другой статьи...

К сожалению, ограниченный объем не позволяет в полной мере осветить все вопросы “пультостроения”. За рамками статьи остались такие интересные темы, как пульты для радиовещания и телевидения, цифровые, репортажные, театральные и др. Впрочем, все пульты имеют множество общих черт, и если Вам по силам разобраться в студийном пульте IN-LINE, то изучение остальных пультов вряд-ли будет представлять для Вас особую сложность.

 

 

--------------------------------------------------------------------------------


ПСИХОАКУСТИЧЕСКИЕ ПРОЦЕССОРЫ. 

 


В последнее время среди звукорежиссеров постоянно возрастает интерес к этому особому, овеянному легендами классу устройств - психоакустическим процессорам. Почему - особому? И почему - овеянному легендами?

Особому - потому, что каждый “обычный” прибор осуществляет какой-либо один вид обработки. Например, компрессор и гейт - осуществляют динамическую обработку входного сигнала, эквалайзер - частотную, и т.д. А практически каждый психоакустический процессор сочетает в себе несколько видов обработки, при этом они - сплошь и рядом - еще и взаимодействуют между собой, и частенько весьма неочевидным образом.

Поэтому же, кстати, возникают и различные легенды. Кто-то слышит (замечает) одно из работающих в реальности нескольких устройств, кто-то другое... Да и плюс еще то, что сами разработчики и изготовители частенько настолько туманно описывают принцип действия и работу предлагаемых ими психоакустических процессоров, что понять что-либо реальное из прилагаемых в комплекте описаний - просто невозможно.

А ведь помимо всего этого, многие из психоакустических процессоров в своей работе используют очень тонкие, не всегда очевидные или просто малоизвестные многим особенности человеческого слуха - такие, как эффект Хааса, эффекты маскировки, интегрирующие свойства слуха, и некоторые другие.

А ряд процессов психоакустической обработки - и вовсе, добавляют ко входному сигналу... его гармоники! Т.е. вместо “положенного” идеально чистого сигнала нашему уху подсовывают заведомо неправильный, “грязный” сигнал. А уши - обманываются, и слушают результирующий сигнал с большим удовольствием, чем исходный, чистый. С точки зрения обиходного “здравого смысла” - это же, вроде, полнейший абсурд? Но - не так все просто. Ведь масса звукопроцессоров, в том числе - самых обычных, имеют просто умопомрачительный коэффициент гармоник. И при этом - звучат более чем великолепно! Например, один из очень дорогих ламповых компрессоров, выпускаемых ныне, имеет для некоторых сигналов коэффициент гармоник около 15%! Так что - “не гармониками едиными”...

И вот все вышеизложенное, плюс большое количество ваших вопросов об этом классе устройств и побудило к написанию этой статьи о психоакустических процессорах. Попробуем вкратце изложить основные сведения о некоторых из них.

Напоследок - одно маленькое “лирическое отступление”. Рассказ о психоакустических процессорах попросту невозможен без указания конкретных устройств и их фирм-изготовителей, т.к. большая часть названий этих процессоров не является общепризнанными техническими терминами, а представляет собой имя собственное, придуманное изготовителем и/или изобретателем соответствующего устройства. Поэтому - просим не рассматривать приводимую ниже информацию о них как рекламу!

Энхансер (Enhancer)

Это - один из самых первых психоакустических процессоров. Его родоначальник - нам, к сожалению, неизвестен. Выпускался (и выпускается поныне) он весьма многими фирмами, поэтому привести здесь их полный список - попросту нереально. В нашей стране этот класс устройств, видимо, наиболее давно стал известен по аппаратуре фирмы Alesis. Он позволяет в ряде случаев сделать звучание несколько более четким и “конкретным”, звонким. Особенно хорош энхансер для обработки отдельных звуков, преимущественно с резкими атаками (ударные, “железо”, и т.д.).

Однако - до сих пор многие весьма смутно представляют себе его работу. Между тем, ничего сложного

 

1 - фильтр высоких частот (ФВЧ);

2 - управляющий элемент (VCA);

3 - сумматор;

4 - блок управления.

 

Входной сигнал энхансера поступает на фильтр (1), выделяющий из всего звукового спектра только его высокочастотные составляющие. Затем этот отфильтрованный сигнал поступает на элемент (2), осуществляющий управление его амплитудой, после чего в сумматоре (3) добавляется (подмешивается) к исходному сигналу.

Управляющее напряжение для VCA вырабатывается блоком управления (4) на основе анализа ВЧ-составляющих входного сигнала.

Различные модели энхансеров отличаются между собой главным образом характеристиками фильтров ФВЧ, и алгоритмом работы и управления. (Следует однако заметить, что, несмотря на возможные различия, все - без исключения! - энхансеры работают только “в плюс”, т.е. могут только увеличивать долю ВЧ-составляющих в суммарном выходном сигнале.)

Отличия в алгоритмах работы энхансеров разных фирм и моделей заключаются, в основном, в том, как именно блок управления реагирует на входной сигнал. Некоторые модели реагируют просто по принципу “есть ВЧ - нет ВЧ”, т.е. если на входе есть ВЧ-составляющие, то их уровень энхансером дополнительно еще увеличивается, если же их нет - то энхансер не оказывает никакого воздействия на входной сигнал.

В более сложных моделях - блок управления реагирует не на саму величину ВЧ-составляющих входного сигнала, а только на ее увеличение. При этом в момент резкого нарастания ВЧ-составляющих на входе энхансера (и только в этот момент!) - их уровень на выходе на короткое время также увеличивается.

Это позволяет сделать работу энхансера менее заметной на слух, и более “живой” - ведь при этом обостряются, становятся более четкими только моменты атаки ударных инструментов, а на общий сигнал его работа практически оказывает очень мало влияния. Благодаря этому лучше прорабатываются мелкие детали звуковой картины, звучание становится более акцентированным, проработанным.

Максимайзер (Sonic Maximizer)

Это устройство, разработанное фирмой ВВЕ, лет 10 назад имело во многих отечественных студиях прямо-таки фантастическую популярность. Доходило даже до высказываний типа: “- Что?! У вас в студии нет максимайзера??? Что ж это тогда за студия-то?..” Затем постепенно интерес стал сходить на нет, и сейчас уже крайне редко где его можно встретить.

Во многом причины такой “скоропостижной смерти” кроются в непонимании и незнании возможностей этого прибора, обусловленном крайне неудачным его мануалом, носящим скорее рекламный характер, и мало что говорящим о его реальной конструкции и принципах действия. Постараемся в меру своих возможностей рассказать об этом, основываясь, в том числе, и на результатах собственных исследований.

В своей основе Sonic Maximizer несколько похож на “классический” энхансер, но - только несколько. Главное его отличие заключается в том, что максимайзер может работать как “в плюс”, так и “в минус”.

По структурной схеме Sonic Maximizer - это два обычных, типа “shelf”, регулятора тембра по НЧ и по ВЧ. Но при этом регулятор НЧ, носящий здесь почему-то весьма гордо-загадочное имя “Low Contour” - самый обычный, который вы можете крутить сами, сколько хотите. А вот к регулятору ВЧ - пользователь не имеет непосредственного доступа, им управляет схема. Вы можете лишь устанавливать уровень ее вмешательства с помощью регулятора “Definition” - четкость.

 

 

1 - регулятор тембра НЧ;

2 - регулятор тембра ВЧ;

3 - Фильтр ВЧ;

4 - полосовой фильтр ПФ;

5 - блок управления.

Сигнал со входа устройства поступает на регуляторы тембра, и одновременно - на два фильтра, ВЧ (3) и полосовой(4). При этом ФВЧ, соответственно своему названию, выделяет только высокочастотные составляющие, а полосовой фильтр ПФ - среднечастотные, лежащие ниже полосы пропускания ФВЧ. Сигналы этих двух полос звуковых частот поступают в блок управления (5), который сравнивает их величины, и на основе этого сравнения решает, что делать с ВЧ - поднимать или ослаблять.

Т.е. если прибор решит, что во входном сигнале уровень ВЧ слишком “задран” относительно середины, то он даст команду регулятору тембра ВЧ “ослабить” верха, если же наоборот - середина излишне “задрана”, а верх слишком слаб - то поступит команда на подъем ВЧ. Регулировка эта осуществляется, правда, не скачком, а пропорционально разнице уровней СЧ и ВЧ.

Каким же именно образом осуществляется эта регулировка - повторимся - решает опять же максимайзер, а не вы. Вы можете только установить предел глубины этой регулировки регулятором “Definition” - четкость. Между собой различные модели максимайзеров отличаются, главным образом, частотами раздела фильтров СЧ/ВЧ и динамическими характеристиками цепей управления. Работу регулятора тембра ВЧ индицируют светодиоды со значком (почему-то) фазы {!!!ЗНАЧОК ФАЗЫ Ф!!!} указывающие, что сейчас происходит - подъем ВЧ (+Ф) , или завал (-Ф).

Так как за вас все решает “тупая железяка”, то это устройство очень легко и часто обманывается. Например, попробуйте подать ему на вход среднечастотный сигнал (типа, скажем, флейты) - и послушайте результат. Шок - вам гарантирован! (Впрочем, это может произойти почти всегда, если использовать любое устройство не по назначению...)

Очевидно, что наилучшее применение максимайзера (“железного”, не путать с компьютерным Plug-in!) - это корректирование баланса различных, уже готовых и сведенных фонограмм, для приведения их к “единообразному” характеру звучания, или же обработка любых иных широкополосных сигналов.

Виталайзер (Vitalizer)

Это - еще одно устройство, окутанное дымкой легенд... При этом их спектр весьма широк, от абсолютной веры во всемогущество виталайзера - до почти полного его неприятия. Между тем этот прибор, разработанный и выпускаемый немецкой фирмой SPL, вполне достойное устройство, если (опять же!) применять его по назначению, и не требовать от него невозможного, выходящего за пределы его конструктивного предназначения.

Виталайзеры выпускаются этой фирмой в нескольких моделях и под разными названиями, от “просто” Vitalizer до такого “страшного” названия, как Psycho Dynamic Processor - “Психодинамический процессор”.

Однако реальные различия между ними (кроме отдельных или совмещенных стереоканалов а также разноименных и частенько “заумных” надписей на одинаковых и простых по своей сути регуляторах) - заключаются только в несколько отличающихся номиналах частотозадающих цепей. Поэтому ограничимся здесь рассмотрением лишь одной модели, с наиболее понятной лицевой панелью.

Его (Виталайзера) структурная схема здесь не приводится, т.к. все они, имеющиеся в фирменных мануалах, предназначены скорее для того, чтобы скрыть истинное устройство данного прибора (увы!), чем для того, чтобы более-менее понятно объяснить его. Поэтому попробуем описать его устройство просто словами.

Эта модель - Stereo Vitalizer - включает в себя довольно своеобразный “психоакустический эквалайзер” и так называемый Surround-Processor. Последний - представляет из себя достаточно тривиальный расширитель стереобазы, хорошо всем знакомый, и, видимо, его рассмотрение здесь не имеет большого смысла. А вот на эквалайзере целесообразно остановиться поподробнее.

Он состоит из двух частей, действующих практически независимо одна от другой. Общее у них только то, что, помимо отдельных регуляторов на различные полосы спектра, есть и общий регулятор Process, устанавливающий глубину влияния сразу всех темброобразующих цепей на обрабатываемый сигнал.

Это достигается благодаря тому, что в Vitalizer применен так называемый “параллельный” принцип построения тракта обработки. При этом различные частотные составляющие сигнала эффектов сначала суммируются между собой, и только затем - добавляются к исходному сигналу. (Об этом принципе мы, возможно, расскажем подробнее когда-нибудь попозже, здесь же - не будем углубляться в излишние тонкости.)

Итак - регулятор НЧ “Bass”. Его отличие от обычных - это то, что, во-первых, он работает только “в плюс”, т.е. на подъем. Независимо от того, куда повернут от нулевого положения, вправо или влево. Во - вторых, в зависимости от направления вращения этого регулятора, сигнал НЧ-составляющих подмешивается к исходному сигналу то синфазно, то противофазно.

(Естественно, что во втором случае - сначала происходит ослабление НЧ, и только при дальнейшем вращении этого регулятора в том же направлении - начинается подъем НЧ.) Очевидно, что результирующая АЧХ при этом будет существенно отличаться от получающейся в первом случае.

Кроме различия в АЧХ, проявляются и различия в ФЧХ. Во втором случае (сложение с противофазой) - фаза результирующего сигнала на низких частотах отстает (запаздывает) от соответствующей фазы во входном сигнале, что в ряде случаев может использоваться для корректировки временного положения в общей звуковой картине звучания отдельных инструментов, имеющих преимущественно низкочастотный спектр. Т.е. можно несколько “раздвинуть”, к примеру, звучание бас-гитары и бочки, или наоборот - совместить их, исходя из того, что в данный момент вам необходимо.

Регулировка тембра на средних и высоких частотах в Виталайзере осуществляется двумя регуляторами - Mid-High Tune и Harmonics.

Первый из этих регуляторов - это регулятор тембра по ВЧ, однако весьма необычный. Дело в том, что, в силу особой конструкции Виталайзера при установке общего регулятора Process в максимальное положение - результирующая АЧХ приобретает плавный, пологий спад в направлении от низких частот к высоким, т.е. чем выше частота входного сигнала - тем более он ослабляется на выходе. Правда, максимальная величина этого ослабления невелика, и составляет около 6дБ. Упомянутый же регулятор Mid-High Tune позволяет поднимать самые высокие частоты, начиная от частоты (примерно) около 20кГц, и... вниз! Единственный момент, который делает работу с всеми Виталайзерами несколько непривычной - это то, что регулятор Mid-High Tune установлен “с точностью до наоборот”. Т.е. крайнее левое его положение соответствует подъему самых верхних частот, а крайнее правое - наоборот, самых низких.

Этот регулятор, по сути, представляет собой электронный аналог резонансного контура, настроенного на частоту 24кГц. И изменение полосы частот, в которых осуществляется коррекция АЧХ, производится путем изменения добротности этого контура, а не частоты его настройки! При его высокой добротности - осуществляется подъем только наивысших частот звукового спектра, который лишь чуть затрагивается достаточно узкой резонансной кривой этого контура.

При снижении добротности (повороте ручки Mid-High Tune в сторону более низких частот) - полоса “захватываемых” этим контуром частот расширяется вниз, и осуществляется подъем не только наивысших составляющих спектра, но и более низких.

Таким образом, при использовании этого регулятора удается поднять самые верхние частоты, и одновременно - ослабить уровень “верхней середины”, которая столь часто нам досаждает во многих отечественных записях. Кстати - сильно удивленные этим нередким и весьма своеобразным дефектом наших звукозаписей, западные звукорежиссеры даже придумали особый термин для его обозначения - “русские 6кГц”! Пожалуй, это - единственный термин, которым отечественная звукозапись обогатила международный профессиональный лексикон...

Однако, мы несколько отвлеклись. Еще один регулятор, входящий в состав Виталайзера - это ручка Harmonics. Это - регулятор уровня выходного сигнала встроенного в Виталайзер эксайтера, подмешиваемого в общий сигнал эффекта. Вообще-то этот эксайтер - один из самых простейших, и кроме регулятора уровня имеет только регулятор частоты настройки, совмещенный физически с ручкой регулятора Mid-High Tune.

Все остальные модели Виталайзеров имеют еще дополнительно и кнопку Solo, позволяющую снимать с него только сигнал эффекта и осуществлять смешивание его с прямым сигналом во внешних устройствах - например, в микшерном пульте.

Эксайтер (Exciter)

С момента своего появления в конце 70-х годов эксайтер был и остается самым популярным в мире психоакустическим процессором. Можно сказать, что с него собственно, и началась эра психоакустических процессоров. Сейчас нет ни одной уважающей себя фирмы, которая не выпускала бы как минимум одной модели эксайтера. К сожалению, в нашей стране ему “не повезло” - в отличие от многих других приборов, эксайтер и поныне не слишком известен широкому кругу звукорежиссеров. Так что же это за зверь такой - эксайтер?

Выпускаемые, кроме своего “родоначальника”, американской фирмы APHEX, еще многими фирмами, эти приборы имеют во многом схожие структуры. Однако большинство опубликованных в открытой печати их структурных схем имеют множество случайных (или предумышленных - кто знает?) ошибок, поэтому ниже приведена блок-схема эксайтера, выпускаемого московской фирмой LONG, а попросту говоря – нами... :))

Внимание - публикуется впервые! (Что поделаешь - "искусство требует жертв"!)J

От наиболее известного в нашей стране эксайтера (видимо, им является Aural Exciter тип C производства APHEX) эта модель отличается существенно более широким набором пользовательских функций.

 

1 - входной регулируемый усилитель;

2 - специальный фильтр ВЧ;

3 - генератор гармоник;

4 - сумматор сигнала эффекта;

5 - выходной сумматор.

Поступающий на вход эксайтера сигнал разветвляется на два: один из них поступает непосредственно на выходной сумматор, а второй направляется в цепи обработки, после которых он добавляется к прямому, необработанному сигналу. (Эксайтер, так же как и рассмотренный выше Виталайзер, тоже построен по параллельному принципу.)

В цепи обработки сигнал вначале поступает на входной регулируемый усилитель (1), с помощью которого можно подобрать необходимую вам величину загрузки (уровень возбуждения) генератора гармоник (3), находящегося после специального фильтра ВЧ (2). Этот фильтр имеет особые АЧХ и ФЧХ, позволяющие при дальнейшем суммировании обработанного и прямого сигналов получить “растяжку” коротких импульсов, и как следствие - несколько увеличить их субъективно воспринимаемую громкость.

В фильтре имеется регулятор частоты настройки Tune, позволяющий выбрать для обработки желаемую часть спектра входного звукового сигнала, и регулятор добротности Peaking, позволяющий создать дополнительный акцент в звучании. Кроме этих регуляторов, в фильтре имеется переключатель Vox/Wide, кардинальным образом изменяющий характер работы и, соответственно, звучания эксайтера, особенно в области средних частот.

Прошедший фильтрацию сигнал опять, в свою очередь, разветвляется на два. Один поступает прямо на сумматор сигнала эффекта (4), а второй - подается на управление генератором гармоник (3). Вот как раз в этом генераторе (он - также состоит из нескольких узлов, но, чтобы не слишком морочить вам голову излишними мелочами, мы эти подробности здесь опускаем) на основе информации, извлекаемой из входного сигнала, и осуществляется самое главное - генерация высших гармоник. При этом синтезируется, главным образом, вторая гармоника - как самая благозвучная (октава, самый чистый музыкальный интервал!), а также еще некоторые, но существенно меньшей амплитуды.

Синтезированные здесь гармоники подаются на сумматор сигнала эффекта (4) через регулятор Brightness, позволяющий установить желаемую их величину в общем сигнале эффекта.

Затем - полностью сформированный, этот сигнал с помощью регулятора Mix подмешивается к исходному (входному) сигналу в выходном сумматоре (5). Упомянутой ручкой Mix вы устанавливаете желаемую величину получаемого эффекта действия эксайтера.

По звуку - эксайтер относится к той, любимой профессиональными звукорежиссерами группе устройств, работа которых незаметна - до тех пор, пока их не выключишь. Производимый им эффект нагляднее всего описывается так: занавесьте ваши студийные мониторы одеялом и включите звук. Н-да...

А теперь - снимите одеяло. Лучше? То-то же! Эксайтер действует очень похоже - при его включении из звука уходят “ватность” и муть, звучание становится четким и прозрачным.

Так как действие его основано на довольно сложном процессе, учитывающем комплексный характер восприятия звуков человеческим ухом, то в силу сложности этого процесса его принципиально невозможно охарактеризовать с помощью цифр. Вот поэтому все попытки как то охарактеризовать производимый эксайтером (да и не только им) эффект носят преимущественно описательный характер.

Кстати - это вообще одна из отличительных черт всех психоакустических процессоров, невозможность с помощью любого набора каких-либо цифровых параметров описать их работу. Поэтому не удивляйтесь, если в рекламных материалах - или даже в самом мануале на приглянувшийся вам процессор - вы найдете кучу абсолютно не нужных вам цифр (типа веса, размеров, потребляемой мощности и т.д.), и не найдете практически ни одной цифры, характеризующей то единственное, что вас на самом деле интересует - звук. В случае с эксайтером - единственная цифра, имеющая “отношение к делу”, это диапазон перестройки (частота настройки) фильтра. В большинстве моделей это диапазон от 700 Гц до 7кГц, в описанном выше приборе - пределы регулирования несколько шире, от 450Гц до 8кГц.

Применение эксайтера придает прозрачность и четкость любому звучанию, при его включении звук как бы “раскрывается”. Значительно улучшаются проработка и восприятие мельчайших деталей и нюансов звукового сигнала, звук становится живым и естественным, начинает “дышать”. Вокал после обработки его эксайтером приобретает повышенную четкость и полетность, ударные инструменты (особенно “железо”) - начинают звучать лучше, чем “живые”.

А акустическая гитара с эксайтером - это же просто мечта! (Услышите - убедитесь!) Применив эксайтер для обработки суммарного сигнала на концерте, вы удивитесь, как изумительно, оказывается, может звучать ваша РА-система. Практически не существует ни одного музыкального инструмента или звуковоспроизводящей системы, звучание которых нельзя было бы улучшить эксайтером!

Спектральный процессор фирмы Долби (Dolby Spectral Processor)

Еще один очень интересный прибор, который просто необходимо упомянуть в этом обзоре. Он выпускается всего одной модели, но номер у нее почему-то аж 740! (Model 740). Не правда ли, больше всего напоминает известное выражение Генри Форда : - “у меня вы можете купить машину любой модели и любого цвета, при условии, что это будет модель Форд-Т черного цвета”? Кстати - по большей части лицевая панель у 740-й модели действительно, имеет именно черный цвет...

Этот процессор по своей сути является одной из разновидностей многополосных компрессоров, поэтому - вроде бы - не совсем корректно рассматривать его в этом обзоре. Скорее уж надо б его в обзор компрессоров, наверное? На первый взгляд верно, но не совсем. Причина этого в том, что он обрабатывает только сигналы низкого уровня, и абсолютно не затрагивает сильные сигналы. А вся психоакустика как раз и имеет дело преимущественно со слабыми сигналами. Кстати - ведь и вообще вся основная продукция фирмы Dolby (компандерные системы шумоподавления для звукозаписи) осуществляет изменения именно в области слабых сигналов.

По утверждению фирмы, при разработке этого процессора ими был использован опыт работы со слабыми сигналами, накопленный в процессе работы по созданию системы шумоподавления Dolby SR. Второе название Dolby Spectral Processor Model 740 - это “Low-level EQ”, низкоуровневый эквалайзер.

Прибор содержит два идентичных канала, с возможностью их объединения в стереопару (Stereo-Link). Каждый канал включает в себя трехполосный кроссовер с регулируемыми частотами раздела, от 75Гц до 1кГц для раздела НЧ/СЧ, и от 500Гц до 8кГц - для разделения СЧ/ВЧ.

В каждой полосе включен особый компрессор. Подробности его устройства, к сожалению, фирмой не раскрываются, так же как и его характеристики.

Для трех компрессоров каждого канала имеется один, общий для всех регулятор порога срабатывания, от (-60дБ) до (-40дБ). При работе компрессора сигналы с уровнями ниже пороговых могут подниматься (усиливаться) на величину вплоть до 20дБ. Величину требуемого максимального подъема вы можете установить сами, с помощью отдельных для каждой полосы регуляторов. При этом все сигналы, имеющие больший уровень - абсолютно не затрагиваются!

Это позволяет эффективно “вытащить” даже самые мелкие детали звуковой картины, которые часто маскируются сильными звуками, и попросту теряются на их фоне. Кроме этого, следует учитывать еще и тот факт, что для слабых звуков АЧХ слуха существенно нелинейна, т.е. слабые низко- и высокочастотные составляющие могут просто пропасть, независимо ни от чего. Пример этого можно наблюдать на затихающих концовках песен - ведь на фэйдах первыми пропадают именно сигналы, лежащие на краях звукового диапазона. Dolby Spectral Processor поможет и здесь, сделав ваши фэйды более ровными, не изменяющими свою тембральную окраску даже в самых тихих местах!

Дополнительным плюсом в этом процессоре является то, что он совершенно не изменяет максимального уровня вашего сигнала.

Помимо же всего описанного, в процессор встроен и шумоподавитель - классического типа, со скользящим (следящим) фильтром. Конечно, не следует ожидать от него выдающихся результатов при попытке очистить им фонограммы от сильных шумов, ведь сама фирма называет этот шумоподавитель “нежным”. Да и предназначен он, главным образом, для уменьшения уровня шумов, которые может “вытащить” в процессе своей работы сам процессор, при подъеме им слабых сигналов.

После обработки этим процессором звук становится более конкретным, различимым даже в мельчайших деталях. При этом общая динамика сигнала практически не затрагивается, не изменяется характер переходных процессов на атаках музыкальных инструментов, но само звучание приобретает плотность и “сочность”, улучшается даже восприятие реверберации, особенно в тихих местах.

 


В корзине товаров: 0
На сумму: звоните